Dilogarithm Explained

In mathematics, the dilogarithm (or Spence's function), denoted as, is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:

\operatorname{Li}2(z)=

z{ln(1-u)
-\int
0

\overu}du,z\in\Complex

and its reflection.For, an infinite series also applies (the integral definition constitutes its analytical extension to the complex plane):

\operatorname{Li}2(z)=

infty
\sum
k=1

{zk\overk2}.

Alternatively, the dilogarithm function is sometimes defined as

v
\int
1
lnt
1-t

dt=\operatorname{Li}2(1-v).

In hyperbolic geometry the dilogarithm can be used to compute the volume of an ideal simplex. Specifically, a simplex whose vertices have cross ratio has hyperbolic volume

D(z)=\operatorname{Im}\operatorname{Li}2(z)+\arg(1-z)log|z|.

The function is sometimes called the Bloch-Wigner function.[1] Lobachevsky's function and Clausen's function are closely related functions.

William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.[2] He was at school with John Galt,[3] who later wrote a biographical essay on Spence.

Analytic structure

Using the former definition above, the dilogarithm function is analytic everywhere on the complex plane except at

z=1

, where it has a logarithmic branch point. The standard choice of branch cut is along the positive real axis

(1,infty)

. However, the function is continuous at the branch point and takes on the value

\operatorname{Li}2(1)=\pi2/6

.

Identities

\operatorname{Li}2(z)+\operatorname{Li}

2(-z)=1
2
2).
\operatorname{Li}
2(z
[4]

\operatorname{Li}2(1-z)+\operatorname{Li}

\right)=-
2\left(1-1
z
(lnz)2
2

.

\operatorname{Li}2(z)+\operatorname{Li}

2(1-z)={\pi
2}{6}-ln

z ⋅ ln(1-z).

[4] The reflection formula.

\operatorname{Li}2(-z)-\operatorname{Li}

2(1-z)+1
2
2)=-{\pi
2}{12}-ln
\operatorname{Li}
2(1-z

zln(z+1).

\operatorname{Li}2(z)

+\operatorname{Li}
2\left(1
z

\right)=-

\pi2
6

-

(ln(-z))2
2

.

[4]
\operatorname{L}(z)+\operatorname{L}(y)=\operatorname{L}(xy)+\operatorname{L}(x(1-y))+\operatorname{L}(
1-xy
y(1-x)
1-xy

)

.[5] [6] Abel's functional equation or five-term relation where
\operatorname{L}(x)=\pi
6
[\operatorname{Li}
2(z)+12ln(z)ln(1-z)]
is the Rogers L-function (an analogous relation is satisfied also by the quantum dilogarithm)

Particular value identities

\operatorname{Li}\right)-
2\left(1
3
1
6
\operatorname{Li}\right)=
2\left(1
9
{\pi
2}{18}-(ln3)2
6

.

\operatorname{Li}\right)-
2\left(-1
3
1
3
\operatorname{Li}\right)=-
2\left(1
9
{\pi
2}{18}+(ln3)2
6

.

\operatorname{Li}\right)+
2\left(-1
2
1
6
\operatorname{Li}\right)=-
2\left(1
9
{\piln3-
2}{18}+ln2 ⋅
(ln2)2-
2
(ln3)2
3

.

\operatorname{Li}\right)+
2\left(1
4
1
3
\operatorname{Li}\right)=
2\left(1
9
{\pi
2}{18}+2ln2 ⋅ ln3-2(ln
2-2
3
2)

(ln3)2.

\operatorname{Li}
2\left(-1
8
\right)+\operatorname{Li}\right)=-
2\left(1
9
1\left(ln{
2
9
8
}\right)^2.
36\operatorname{Li}
2\left(1
2
\right)-36\operatorname{Li}
2\left(1
4
\right)-12\operatorname{Li}
2\left(1
8
\right)+6\operatorname{Li}
2\left(1
64

\right)={\pi}2.

Special values

\operatorname{Li}
2(-1)=-{\pi
2}{12}.

\operatorname{Li}2(0)=0.

Its slope = 1.
\operatorname{Li}\right)=
2\left(1
2
{\pi
2}{12}-(ln2)2
2

.

\operatorname{Li}2(1)=\zeta(2)=

{\pi
2}{6},
where

\zeta(s)

is the Riemann zeta function.
\operatorname{Li}
2(2)={\pi
2}{4}-i\piln2.
\begin{align} \operatorname{Li}\right) &=-
2\left(-\sqrt5-1
2
{\pi\left(ln
2}{15}+1
2
\sqrt5+1
2

\right)2\\ &=-

{\pi
2}{15}+1
2

\operatorname{arcsch}22. \end{align}

\begin{align} \operatorname{Li}\right) &=-
2\left(-\sqrt5+1
2
{\pi
2}{10}-ln

2

\sqrt5+1\\ &=-
2
{\pi
2}{10}-\operatorname{arcsch}

22. \end{align}

\begin{align} \operatorname{Li}\right) &=
2\left(3-\sqrt5
2
{\pi
2}{15}-ln

2

\sqrt5+1\\ &=
2
{\pi
2}{15}-\operatorname{arcsch}

22. \end{align}

\begin{align} \operatorname{Li}\right) &=
2\left(\sqrt5-1
2
{\pi
2}{10}-ln

2

\sqrt5+1\\ &=
2
{\pi
2}{10}-\operatorname{arcsch}

22. \end{align}

In particle physics

Spence's Function is commonly encountered in particle physics while calculating radiative corrections. In this context, the function is often defined with an absolute value inside the logarithm:

\operatorname{\Phi}(x)=

x
-\int
0
ln|1-u|
u

du=\begin{cases} \operatorname{Li}2(x),&x\leq1;\

\pi2
3

-

1
2

(lnx)2-

\operatorname{Li}
2(1
x

),&x>1. \end{cases}

See also

References

Further reading

. Spencer Bloch . Higher regulators, algebraic K-theory, and zeta functions of elliptic curves . CRM Monograph Series . 11 . Providence, RI . . 2000 . 0-8218-2114-8 . 0958.19001 .

External links

Notes and References

  1. Zagier p. 10
  2. Web site: William Spence - Biography.
  3. Web site: Biography – GALT, JOHN – Volume VII (1836-1850) – Dictionary of Canadian Biography.
  4. Zagier
  5. Web site: Weisstein . Eric W. . Rogers L-Function . 2024-08-01 . mathworld.wolfram.com . en.
  6. Rogers . L. J. . 1907 . On the Representation of Certain Asymptotic Series as Convergent Continued Fractions . Proceedings of the London Mathematical Society . en . s2-4 . 1 . 72–89 . 10.1112/plms/s2-4.1.72.