In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra
l{B}(H)
H.
l{B}(H)
A
l{B}(H)
\ast
x,y\inA
x\ast\inA
xy=yx
See also: Projection-valued measure.
Throughout,
H
(X,\Omega),
\Omega
X,
\pi:\Omega\tol{B}(H)
\omega\in\Omega,
\pi(\omega)
H
\pi(\omega)
\pi(\omega):H\toH
\pi(\omega)=\pi(\omega)*
\pi(\omega)\circ\pi(\omega)=\pi(\omega)
\operatorname{Id}H
H
x,y\inH,
\Omega\to\Complex
\omega\mapsto\langle\pi(\omega)x,y\rangle
M
(X,\Omega)
\pi:\Omega\tol{B}(H)
\omega1,\omega2\in\Omega
\pi(\varnothing)=0
\pi(X)=\operatorname{Id}H
\omega\in\Omega,
\pi(\omega)
H
x,y\inH,
\pix,:\Omega\to\Complex
\pix,y(\omega)=\langle\pi(\omega)x,y\rangle
\Omega
\pi\left(\omega1\cap\omega2\right)=\pi\left(\omega1\right)\circ\pi\left(\omega2\right)
\omega1\cap\omega2=\varnothing
\pi\left(\omega1\cup\omega2\right)=\pi\left(\omega1\right)+\pi\left(\omega2\right)
If
\Omega
\sigma
x,y\inH,
\pix,:\Omega\to\Complex
\pi
Throughout, let
\pi
x\inH,
\pix,:\Omega\to\Complex
\Omega
\left\|\pix,\right\|=\pix,(X)=\|x\|2
\pix,(\omega)=\langle\pi(\omega)x,x\rangle=\|\pi(\omega)x\|2
\omega\in\Omega.
For every
\omega1,\omega2\in\Omega
\pi\left(\omega1\right)\pi\left(\omega2\right)=\pi\left(\omega2\right)\pi\left(\omega1\right)
\pi\left(\omega1\cap\omega2\right)
\omega1\cap\omega2=\varnothing
\pi\left(\omega1\right)
\pi\left(\omega2\right)
\pi\left(\omega1\right)\pi\left(\omega2\right)=0=\pi\left(\omega2\right)\pi\left(\omega1\right).
\pi:\Omega\tol{B}(H)
\omega1,\omega2,\ldots
\Omega
\omega
\pi\left(\omegai\right)=0
i
\pi(\omega)=0.
\pi:\Omega\tol{B}(H)
\omega1,\omega2,\ldots
\Omega
\omega
n | |
\sum | |
i=1 |
\pi\left(\omegai\right)
\pi(\omega)
l{B}(H)
n\toinfty
0
\geq1,
\pi\left(\omegai\right)
0.
x\inH,
\pix:\Omega\toH
\pix(\omega):=\pi(\omega)x
H
\Omega.
\omega1,\omega2,\ldots
\Omega
\omega,
n | |
\sum | |
i=1 |
\pi\left(\omegai\right)x
\pi(\omega)x
H.
infty | |
\sum | |
i=1 |
\pi\left(\omegai\right)x=\pi(\omega)x.
\left(\omegai\right)
infty | |
i=1 |
\subseteq\Omega
\omegainfty\in\Omega
n | |
\sum | |
i=1 |
\pi\left(\omegai\right)=
n | |
\pi\left(cup | |
i=1 |
\omegai\right)
\pi
\pi\left(\omegainfty\right)
l{B}(H)
x\inH
n | |
\sum | |
i=1 |
\pi\left(\omegai\right)x
\pi\left(\omegainfty\right)x
H
The
\pi:\Omega\tol{B}(H)
(X,\Omega).
Suppose
f:X\to\Complex
\Omega
Vf
\Complex
\pi\left(f-1\left(Vf\right)\right)=0.
D1,D2,\ldots
\Complex
D | |
i1 |
,
D | |
i2 |
,\ldots
\pi\left(f-1
\left(D | |
ik |
\right)\right)=0
D | |
i1 |
\cup
D | |
i2 |
\cup … =Vf.
D
\Complex
D\cap\operatorname{Im}f=\varnothing
\pi\left(f-1(D)\right)=\pi(\varnothing)=0
D\subseteqVf
\pi\left(f-1(D)\right)
\Complex\setminus\operatorname{cl}(\operatorname{Im}f)\subseteqVf.
The essential range of
f
Vf.
\Complex
f(x)
x\inX
x\inX
\omega\in\Omega
\pi(\omega)=0
\Complex
\Complex
The function
f
\|f\|infty,
|λ|
λ
f.
Let
l{B}(X,\Omega)
\Omega
f:X\to\Complex,
\|f\|infty:=\supx|f(x)|.
\| ⋅ \|infty
l{B}(X,\Omega),
Ninfty:=\left\{f\inl{B}(X,\Omega):\|f\|infty=0\right\},
l{B}(X,\Omega)
\left(l{B}(X,\Omega),\| ⋅ \|infty\right).
l{B}(X,\Omega)
Ninfty
Linfty(\pi):=l{B}(X,\Omega)/Ninfty
f+Ninfty\inLinfty(\pi)
\|f\|infty
f+Ninfty=g+Ninfty
\|f\|infty=\|g\|infty
Linfty(\pi)
f+Ninfty
Linfty(\pi)
f.
f
f+Ninfty
Linfty(\pi).
The maximal ideal space of a Banach algebra
A
A\to\Complex,
\sigmaA.
T
A,
T
G(T):\sigmaA\to\Complex
G(T)(h):=h(T).
\sigmaA
G(T):\sigmaA\to\Complex
\sigmaA
T
A,
G(T)
C\left(\sigmaA\right),
\sigmaA.
G(T)
\sigma(T)
max\left\{|G(T)(h)|:h\in\sigmaA\right\},
\leq\|T\|.
The above result can be specialized to a single normal bounded operator.