In the gravitational two-body problem, the specific orbital energy
\varepsilon
\varepsilonp
\varepsilonk
v
r
\mu={G}(m1+m2)
h
e
a
It is typically expressed in
MJ | |
kg |
km2 | |
s2 |
For an elliptic orbit, the specific orbital energy equation, when combined with conservation of specific angular momentum at one of the orbit's apsides, simplifies to:[2]
where
\mu=G\left(m1+m2\right)
a
For a parabolic orbit this equation simplifies to
For a hyperbolic trajectory this specific orbital energy is either given by
or the same as for an ellipse, depending on the convention for the sign of a.
In this case the specific orbital energy is also referred to as characteristic energy (or
C3
vinfty
It is relevant for interplanetary missions.
Thus, if orbital position vector (
r
v
\mu
For an elliptic orbit the rate of change of the specific orbital energy with respect to a change in the semi-major axis iswhere
\mu={G}(m1+m2)
a
In the case of circular orbits, this rate is one half of the gravitation at the orbit. This corresponds to the fact that for such orbits the total energy is one half of the potential energy, because the kinetic energy is minus one half of the potential energy.
If the central body has radius R, then the additional specific energy of an elliptic orbit compared to being stationary at the surface is
The quantity
2a-R
a
R
(gR/2)
V=\sqrt{gR}
The International Space Station has an orbital period of 91.74 minutes (5504s), hence by Kepler's Third Law the semi-major axis of its orbit is 6,738km.
The specific orbital energy associated with this orbit is −29.6MJ/kg: the potential energy is −59.2MJ/kg, and the kinetic energy 29.6MJ/kg. Compare with the potential energy at the surface, which is −62.6MJ/kg. The extra potential energy is 3.4MJ/kg, the total extra energy is 33.0MJ/kg. The average speed is 7.7km/s, the net delta-v to reach this orbit is 8.1km/s (the actual delta-v is typically 1.5–2.0km/s more for atmospheric drag and gravity drag).
The increase per meter would be 4.4J/kg; this rate corresponds to one half of the local gravity of 8.8m/s2.
For an altitude of 100km (radius is 6471km):
The energy is −30.8MJ/kg: the potential energy is −61.6MJ/kg, and the kinetic energy 30.8MJ/kg. Compare with the potential energy at the surface, which is −62.6MJ/kg. The extra potential energy is 1.0MJ/kg, the total extra energy is 31.8MJ/kg.
The increase per meter would be 4.8J/kg; this rate corresponds to one half of the local gravity of 9.5m/s2. The speed is 7.8km/s, the net delta-v to reach this orbit is 8.0km/s.
Taking into account the rotation of the Earth, the delta-v is up to 0.46km/s less (starting at the equator and going east) or more (if going west).
For Voyager 1, with respect to the Sun:
\mu=GM
Hence:
Thus the hyperbolic excess velocity (the theoretical orbital velocity at infinity) is given by
However, Voyager 1 does not have enough velocity to leave the Milky Way. The computed speed applies far away from the Sun, but at such a position that the potential energy with respect to the Milky Way as a whole has changed negligibly, and only if there is no strong interaction with celestial bodies other than the Sun.
Assume:
Then the time-rate of change of the specific energy of the rocket is
v ⋅ a
v ⋅ (a-g)
v ⋅ g
The change of the specific energy of the rocket per unit change of delta-v is
Thus, when applying delta-v to increase specific orbital energy, this is done most efficiently if a is applied in the direction of v, and when |v| is large. If the angle between v and g is obtuse, for example in a launch and in a transfer to a higher orbit, this means applying the delta-v as early as possible and at full capacity. See also gravity drag. When passing by a celestial body it means applying thrust when nearest to the body. When gradually making an elliptic orbit larger, it means applying thrust each time when near the periapsis.
When applying delta-v to decrease specific orbital energy, this is done most efficiently if a is applied in the direction opposite to that of v, and again when |v| is large. If the angle between v and g is acute, for example in a landing (on a celestial body without atmosphere) and in a transfer to a circular orbit around a celestial body when arriving from outside, this means applying the delta-v as late as possible. When passing by a planet it means applying thrust when nearest to the planet. When gradually making an elliptic orbit smaller, it means applying thrust each time when near the periapsis.
If a is in the direction of v: