Space-based measurements of carbon dioxide explained
Space-based measurements of carbon dioxide are used to help answer questions about Earth's carbon cycle. There are a variety of active and planned instruments for measuring carbon dioxide in Earth's atmosphere from space. The first satellite mission designed to measure was the Interferometric Monitor for Greenhouse Gases (IMG) on board the ADEOS I satellite in 1996. This mission lasted less than a year. Since then, additional space-based measurements have begun, including those from two high-precision (better than 0.3% or 1 ppm) satellites (GOSAT and OCO-2). Different instrument designs may reflect different primary missions.
Purposes and highlights of findings
There are outstanding questions in carbon cycle science that satellite observations can help answer. The Earth system absorbs about half of all anthropogenic emissions.[1] However, it is unclear exactly how this uptake is partitioned to different regions across the globe. It is also uncertain how different regions will behave in terms of flux under a different climate. For example, a forest may increase uptake due to the fertilization or β-effect,[2] or it could release due to increased metabolism by microbes at higher temperatures.[3] These questions are difficult to answer with historically spatially and temporally limited data sets.
Even though satellite observations of are somewhat recent, they have been used for a number of different purposes, some of which are highlighted here:
- Megacity enhancements were observed with the GOSAT satellite and minimum observable space-based changes in emissions were estimated.[4]
- Satellite observations have been used for visualizing how is distributed globally,[5] including studies that have focused on anthropogenic emissions.[6]
- Flux estimates were made of into and out of different regions.[7] [8]
- Correlations were observed between anomalous temperatures and measurements in boreal regions.[9]
- Zonal asymmetric patterns of were used to observe fossil fuel signatures.[10]
- Emission ratios with methane were measured from forest fires.[11]
- emission ratios with carbon monoxide (a marker of incomplete combustion) measured by the MOPITT instrument were analyzed over major urban regions across the globe to measure developing/developed status.[12]
- OCO-2 observations were used to estimate emissions from wildfires in Indonesia in 2015.[13]
- OCO-2 observations were also used to estimate the excess land-ocean flux due to the 2014–16 El Niño event.[14] [15]
- GOSAT observations were used to attribute 2010-2011 El Niño Modoki on the Brazilian carbon balance.[16]
- OCO-2 observations were used to quantify emissions from individual power plants, demonstrating the potential for future space-based emission monitoring.[17]
Challenges
Remote sensing of trace gases has several challenges. Most techniques rely on observing infrared light reflected off Earth's surface. Because these instruments use spectroscopy, at each sounding footprint a spectrum is recorded—this means there is a significantly (about 1000×) more data to transfer than what would be required of just an RGB pixel. Changes in surface albedo and viewing angles may affect measurements, and satellites may employ different viewing modes over different locations; these may be accounted for in the algorithms used to convert raw into final measurements. As with other space-based instruments, space debris must be avoided to prevent damage.
Water vapor can dilute other gases in air and thus change the amount of in a column above the surface of the Earth, so often column-average dry-air mole fractions (X) are reported instead. To calculate this, instruments may also measure O, which is diluted similarly to other gases, or the algorithms may account for water and surface pressure from other measurements.[18] Clouds may interfere with accurate measurements so platforms may include instruments to measure clouds. Because of measurement imperfections and errors in fitting signals to obtain X, space-based observations may also be compared with ground-based observations such as those from the TCCON.[19]
List of instruments
Instrument/satellite | Primary institution(s) | Service dates | Approximate usable daily soundings | Approximate sounding size | Public data | Notes | Refs |
---|
HIRS-2/TOVS (NOAA-10) | NOAA (U.S.) | | | | | Measuring was not an original mission goal | [20] |
IMG (ADEOS I) | NASDA (Japan) | | 50 | | | FTS system | [21] |
SCIAMACHY (Envisat) | ESA, IUP University of Bremen (Germany) | | 5,000 | | | | [22] |
AIRS (Aqua) | JPL (U.S.) | | 18,000 | | | | [23] [24] |
IASI (MetOp) | CNES/EUMETSAT (ESA) | | | | Yes (only a few days)[25] | | [26] |
| JAXA (Japan) | | 10,000 | 10.5 km diameter | | First dedicated high precision (<0.3%) mission, also measures CH4 | [27] [28] |
| JPL (U.S.) | | 100,000 | | | Failed to reach orbit[29] | |
| JPL (U.S.) | | 100,000 | | | High precision (<0.3%) | [30] |
GHGSat-D (or Claire) | GHGSat (Canada) | | ~2–5 images, 10,000+ pixels each | , | | | [31] |
TanSat (or CarbonSat) | CAS (China) | | 100,000 | | Yes (L1B radiances)[32] | | [33] [34] |
GAS FTS aboard FY-3D | CMA (China) | [35] | 15,000 | 13 km diameter | | | [36] [37] |
GMI (GaoFen-5, (fr)) | CAS (China) | [38] | | 10.3 km diameter | | | [39] [40] |
GOSAT-2 | JAXA (Japan) | [41] | 10,000+ | 9.7 km diameter | Yes (L1B radiances)[42] | Will also measure CH4 and CO | [43] |
| JPL (U.S.) | [44] | 100,000 | | [45] | | [46] |
MicroCarb | CNES (France) | expected 2022 | ~30,000 | | | Will likely also measure CH4 | [47] |
GOSAT-3 | JAXA (Japan) | expected 2022 | | | | | |
| University of Oklahoma (U.S.) | expected 2023 | ~800,000 | | | First -observing geosynchronous satellite, will also measure CH4 and CO | [48] [49] | |
Partial column measurements
In addition to the total column measurements of down to the ground, there have been several limb sounders that have measured through the edge of Earth's upper atmosphere, and thermal instruments that measure the upper atmosphere during the day and night.
- Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard TIMED launched 7 December 2001 makes measurements in the mesosphere and lower thermosphere in thermal bands.[50]
- ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) onboard SCISAT-1 launched 13 August 2003 measures solar spectra, from which profiles of can be calculated.[51]
- SOFIE (Solar Occultation for Ice Experiment) is a limb sounder on board the AIM satellite launched 25 April 2007.[52]
Conceptual Missions
There have been other conceptual missions which have undergone initial evaluations but have not been chosen to become a part of space-based observing systems. These include:
- Active Sensing of Emissions over Nights, Days, and Seasons (ASCENDS) is a lidar-based mission[53]
- Geostationary Fourier Transform Spectrometer (GeoFTS)[54]
- Atmospheric Imaging Mission for Northern regions (AIM-North) would involve a constellation of two satellites in elliptical orbits to focus on northern regions.[55] [56] The concept is undergoing a Phase 0 study in 2019–2020.
- Carbon Monitoring Satellite (CarbonSat) was a concept for an imaging satellite with global coverage approximately every 6 days. This mission never proceeded beyond the concept phase.[57]
Notes and References
- Carbon cycle conundrums. Proceedings of the National Academy of Sciences. Schimel. David. 104. 47. 18353–18354 . November 2007. 10.1073/pnas.0709331104. 17998533. 2007PNAS..10418353S. 2141782. free.
- Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences. Schimel. David . Stephens. Britton B.. Fisher. Joshua B.. 112. 2. 436–441. January 2015. 10.1073/pnas.1407302112. 25548156. 2015PNAS..112..436S. 4299228. free.
- Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature. Cox. Peter M.. Pearson. David. Booth. Ben B.. Friedlingstein. Pierre. Huntingford. Chris. Jones. Chris D.. Luke . Catherine M.. 3. 494. 7437. 341–344. February 2013. 10.1038/nature11882. 23389447. 2013Natur.494..341C. 205232639 .
- Space-based observations of megacity carbon dioxide. Geophysical Research Letters. Kort. Eric A.. Frankenberg. Christian. Miller. Charles E.. Oda. Tom. 3 . 39. 17. September 2012. L17806. 10.1029/2012GL052738. 2012GeoRL..3917806K. free.
- Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT) . Geophysical Research Letters . Hammerling . Dorit M. . Michalak . Anna M. . O'Dell . Christopher . Kawa . S. Randolph . 3 . 39 . 8 . L08804 . April 2012 . 10.1029/2012GL051203 . 2012GeoRL..39.8804H. 2060/20120011809 . 89616306 . free .
- Direct space-based observations of anthropogenic CO2 emission areas from OCO-2 . Geophysical Research Letters . Hakkarainen . J. . Ialongo . I. . Tamminen . J. . 43 . 21 . November 2016 . 11,400–11,406 . 10.1002/2016GL070885 . 2016GeoRL..4311400H. free .
- Global CO2 fluxes estimated from GOSAT retrievals of total column CO2 . Atmospheric Chemistry and Physics . Basu . S. . Guerlet . S. . Butz . A. . Houweling . S. . Hasekamp . O. . Aben . I. . Krummel . P. . Steele . P. . Langenfelds . R. . Torn . M. . Biraud . S. . Stephens . B. . Andrews . A. . Worthy . D. . 3 . 13 . 17 . September 2013 . 8695–8717 . 10.5194/acp-13-8695-2013 . 2013ACP....13.8695B. free .
- Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data . Atmospheric Chemistry and Physics . Deng . F. . Jones . D. B. A. . Henze . D. K. . Bousserez . N. . Bowman . K. W. . Fisher . J. B. . Nassar . R. . O'Dell . C. . Wunch . D. . Wennberg . P. O. . Kort . E. A. . Wofsy . S. C. . Blumenstock . T. . Deutscher . N. M. . Griffith . D. W. T. . Hase . F. . Heikkinen . P. . Sherlock . V. . Strong . K. . Sussmann . R. . Warneke . T. . 3 . 14 . 7 . April 2014 . 3703–3727 . 10.5194/acp-14-3703-2014 . 2014ACP....14.3703D. free .
- The covariation of Northern Hemisphere summertime CO2 with surface temperature in boreal regions . Atmospheric Chemistry and Physics . Wunch . D. . Wennberg . P. O. . Messerschmidt . J. . Parazoo . N. C. . Toon . G. C. . Deutscher . N. M. . Keppel-Aleks . G. . Roehl . C. M. . Randerson . J. T. . Warneke . T. . Notholt . J. . 3 . 13 . 18 . September 2013 . 9447–9459 . 10.5194/acp-13-9447-2013 . 2013ACP....13.9447W. free .
- Towards constraints on fossil fuel emissions from total column carbon dioxide . Atmospheric Chemistry and Physics . Keppel-Aleks . G. . Wennberg . P. O. . O'Dell . C. W. . Wunch . D. . 3 . 13 . 8 . April 2013 . 4349–4357 . 10.5194/acp-13-4349-2013 . 2013ACP....13.4349K. free .
- First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes . Geophysical Research Letters . Ross . Adrian N. . Wooster . Martin J. . Boesch . Hartmut . Parker . Robert . 3 . 40 . 15 . August 2013 . 4098–4102 . 10.1002/grl.50733 . 2013GeoRL..40.4098R. 2381/38907 . 53691370 .
- Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity . Geophysical Research Letters . Silva . Sam J. . Arellano . Avelino F. . Worden . Helen M. . 40 . 18 . September 2013 . 4971–4976 . 10.1002/grl.50954 . 2013GeoRL..40.4971S. free .
- CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations . Geophysical Research Letters . 44 . 3 . 1537 . Heymann . J. . Reuter . M. . Buchwitz . M. . Schneising . O. . Bovensmann . H. . Burrows . J. P. . Massart . S. . Kaiser . J. W. . Crisp . D. . 1 . February 2017 . 10.1002/2016GL072042. 2017GeoRL..44.1537H . 132149226 .
- Orbiting Carbon Observatory (OCO-2) tracks increase of carbon release to the atmosphere during the 2014-2016 El Niño . 2016 AGU Fall Meeting. 12–16 December 2016. San Francisco, California. . Prabir Kumar . Patra . David . Crisp . Johannes W. . Kaiser . Debra . Wunch . Tazu . Saeki . Kazuhito . Ichii . Takashi . Sekiya . Paul . Wenneberg . David W. T. . Griffith . Dietrich G. . Feist . Dave . Pollard . Voltaire A. . Velazco . Martine . De Maziere . Mahesh Kumar . Sha . Coleen Marie . Roehl . Abhishek . Chatterjee . 1 . 14 December 2016.
- Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño . Science . Liu . Junjie . Bowman . Kevin W. . Schimel . David S. . Parazoo . Nicolas C. . Jiang . Zhe . Lee . Meemong . Bloom . A. Anthony . Wunch . Debra . Frankenberg . Christian . Sun . Ying . Ying Sun (environmental scientist). O’Dell . Christopher W. . Gurney . Kevin R. . Menemenlis . Dimitris . Gierach . Michelle . Crisp . David . Eldering . Annmarie . 1 . 358 . 6360 . October 2017 . eaam5690 . 10.1126/science.aam5690 . 29026011. free .
- Bowman . K. W. . Kerry Bowman . Liu . J. . Bloom . A. A. . Parazoo . N. C. . Lee . M. . Jiang . Z. . Menemenlis . D. . Gierach . M. M. . Collatz . G. J. . 1 . October 2017 . Global and Brazilian Carbon Response to El Niño Modoki 2011-2010 . Earth and Space Science . 4 . 10 . 637–660 . 1703.03778 . 2017E&SS....4..637B . 10.1002/2016ea000204 . 119375779.
- Quantifying CO2 Emissions from Individual Power Plants From Space . Geophysical Research Letters . Nassar . R. . Hill . T.G. . McLinden . C.A. . Wunch . D. . Jones . D.B.A. . Crisp . D. . 1 . October 2017 . 10.1002/2017GL074702 . 44. 19 . 2017GeoRL..4410045N . free .
- The Total Carbon Column Observing Network . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences . Wunch . D. . Toon . G. C. . Blavier . J.-F. L. . Washenfelder . R. A. . Notholt . J. . Connor . B. J. . Griffith . D. W. T. . Sherlock . V. . Wennberg . P. O. . 3 . 369 . 1943 . May 2011 . 2087–2112 . 10.1098/rsta.2010.0240 . 2011RSPTA.369.2087W . 21502178. free .
- Toward accurate CO2 and CH4 observations from GOSAT . Geophysical Research Letters . Butz . A. . Guerlet . S. . Hasekamp . O. . Schepers . D. . Galli . A. . Aben . I. . Frankenberg . C. . Hartmann . J.-M. . Tran . H. . Kuze . A. . Keppel-Aleks . G. . Toon . G. . Wunch . D. . Wennberg . P. . Deutscher . N. . Griffith . D. . Macatangay . R. . Messerschmidt . J. . Notholt . J. . Warneke . T. . 3 . 38 . 14 . L14812 . July 2011 . 10.1029/2011GL047888 . 2011GeoRL..3814812B. free .
- First global measurement of midtropospheric CO2 from NOAA polar satellites: Tropical zone . Journal of Geophysical Research . A. . Chédin . S. . Serrar . N. A. . Scott . C. . Crevoisier . R. . Armante . 3 . 108 . D18 . 4581 . September 2003 . 10.1029/2003JD003439 . 2003JGRD..108.4581C. free .
- Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation . Applied Optics . Kobayashi . Hirokazu . Shimota . Akiro . Kondo . Kayoko . Okumura . Eisuke . Kameda . Yoshihiko . Shimoda . Haruhisa . Ogawa . Toshihiro . 3 . 38 . 33 . November 1999 . 6801–6807 . 10.1364/AO.38.006801 . 18324219 . 1999ApOpt..38.6801K.
- Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models . Atmospheric Chemistry and Physics . Buchwitz . M. . de Beek . R. . Burrows . J. P. . Bovensmann . H. . Warneke . T. . Notholt . J. . Meirink . J. F. . Goede . A. P. H. . Bergamaschi . P. . Körner . S. . Heimann . M. . Schulz . A. . 3 . 5 . 4 . March 2005 . 941–962 . 10.5194/acp-5-941-2005. 2005ACP.....5..941B . free .
- Retrieval of mid-tropospheric CO2 directly from AIRS measurements . Proceedings of the SPIE . Olsen . Edward T. . Chahine . Moustafa T. . Chen . Luke L. . Pagano . Thomas S. . Paul E . Lewis . Sylvia S . Shen . 3 . 6966 . April 2008 . 696613 . 10.1117/12.777920 . 2008SPIE.6966E..13O. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV . 53542643 .
- Satellite remote sounding of mid-tropospheric CO2 . Geophysical Research Letters . Chahine . M. T. . Chen . Luke . Dimotakis . Paul . Jiang . Xun . Li . Qinbin . Olsen . Edward T. . Pagano . Thomas . Randerson . James . Yung . Yuk L. . 3 . 35 . 17 . L17807 . September 2008 . 10.1029/2008GL035022 . 2008GeoRL..3517807C. free .
- Web site: IASI Sounding Products . National Oceanic and Atmospheric Administration . 22 October 2017.
- Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling . Journal of Quantitative Spectroscopy and Radiative Transfer . Liuzzia . G. . Masielloa . G. . Serioa . C. . Venafraa . S. . Camy-Peyret . C. . 3 . 182 . 128–157 . October 2016 . 10.1016/j.jqsrt.2016.05.022 . 2016JQSRT.182..128L. free .
- Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring . Applied Optics . Kuze . Akihiko . Suto . Hiroshi . Nakajima . Masakatsu . Hamazaki . Takashi . 3 . 48 . 35 . December 2009 . 6716 . 10.1364/AO.48.006716 . 20011012 . 2009ApOpt..48.6716K.
- Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space . Atmospheric Measurement Techniques . Kuze . Akihiko . Suto . Hiroshi . Shiomi . Kei . Kawakami . Shuji . Tanaka . Makoto . Ueda . Yoko . Deguchi . Akira . Yoshida . Jun . Yamamoto . Yoshifumi . Kataoka . Fumie . Taylor . Thomas E. . Buijs . Henry L. . 3 . 9 . 6 . June 2016 . 2445–2461 . 10.5194/amt-9-2445-2016 . 2016AMT.....9.2445K. free .
- Overview of the Orbiting Carbon Observatory (OCO) Mishap Investigation Results For Public Release . NASA . 5 November 2018.
- The Orbiting Carbon Observatory-2: First 18 months of science data products . Atmospheric Measurement Techniques Discussions . Eldering . Annmarie . O'Dell . Chris W. . Wennberg . Paul O. . Crisp . David . Gunson . Michael R. . Viatte . Camille . Avis . Charles . Braverman . Amy . Castano . Rebecca . Chang . Albert . Chapsky . Lars . Cheng . Cecilia . Connor . Brian . Dang . Lan . Doran . Gary . Fisher . Brendan . Frankenberg . Christian . Fu . Dejian . Granat . Robert . Hobbs . Jonathan . Lee . Richard A. M. . Mandrake . Lukas . McDuffie . James . Miller . Charles E. . Myers . Vicky . Natraj . Vijay . O'Brien . Denis . Osterman . Gregory B. . Oyafuso . Fabiano . Payne . Vivienne H. . Pollock . Harold R. . Polonsky . Igor . Roehl . Coleen M. . Rosenberg . Robert . Schwandner . Florian . Smyth . Mike . Tang . Vivian . Taylor . Thomas E. . To . Cathy . Wunch . Debra . Yoshimizu . Jan . 3 . 10 . 2 . February 2017 . 549–563 . 10.5194/amt-10-549-2017 . 2017AMT....10..549E. free .
- Web site: GHGSat Global Emissions Monitoring . GHGSat . 11 February 2017 .
- Web site: FENGYUN Satellite Data Center . National Satellite Meteorological Center . 27 October 2017.
- A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data . Chinese Science Bulletin . Liu . Yi . Yang . DongXu . Cai . ZhaoNan . 58 . 13 . May 2013 . 1520–1523 . 10.1007/s11434-013-5680-y. 2013ChSBu..58.1520L . 55268547 . free .
- Web site: China Launches Satellite to Monitor Global Carbon Emissions . Chinese Academy of Sciences . Xinhua . Jia . Liu . 22 December 2016 . 11 February 2017.
- News: Chinese weather satellite launched into polar orbit . Spaceflight Now . Clark . Stephen . 14 November 2017 . 11 May 2018.
- Web site: Satellite: FY-3D . WMO Observing Systems Capability Analysis and Review Tool . 22 October 2017.
- Web site: China successfully launched FY-3D polar orbiting meteorological satellite . China Meteorological Administration . 16 November 2017.
- Web site: Chinese weather satellite launched into polar orbit . Barbosa . Rui . 8 May 2018 . NASAspaceflight.com . 11 May 2018 .
- Mission Overview GaoFen-5 . CEOS-ACC-12 meeting. 13–15 October 2016. Seoul, Korea. . Chen . Liangfu . 2016.
- CO2 Monitoring from Space: TanSat and GF-5/GMI Mission Status . The 9th GEOSS Asia-Pacific Symposium. 11–13 January 2017. Tokyo, Japan. . Liu . Yi . 2017.
- Web site: Launch Results of the H-IIA F40 Encapsulating GOSAT-2 and KhalifaSat . Japan Aerospace Exploration Agency . 29 October 2018 . 5 November 2018.
- Web site: GOSAT-2 Product Archive . . National Institute for Environmental Studies . 25 May 2020 .
- The Status of NIES GOSAT-2 Project and NIES Satellite Observation Center . 12th International Workshop on Greenhouse Gas Measurements from Space. 7–9 June 2016. Kyoto, Japan. . Matsunaga . T. . Maksyutov . S. . Morino . I. . Yoshida . Y. . Saito . M. . Noda . H. . Terao . T. . Nishizawa . T. . Mukai . H. . Saigusa . N. . Machida . T. . 3 . 2016.
- Web site: SpaceX Dragon Heads to Space Station with NASA Science, Cargo . Potter . Sean . 4 May 2019 . nasa.gov . NASA . 4 Aug 2019 .
- Web site: GES Disc Search, OCO-3 . . NASA . 25 May 2020 .
- OCO-3 Science and Status for CEOS . Committee on Earth Observation Satellites . Eldering . Annmarie . Worden . John . October 2016.
- An Introduction to MicroCarb, First European Program for CO2 Monitoring. 12th International Workshop on Greenhouse Gas Measurements from Space, 7–9 June 2016, Kyoto, Japan. Buisson. Francois. Pradines. Didier. Pascal. Veronique. Jouglet. Denis. 3. 9 June 2016.
- Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations . Atmospheric Measurement Techniques . Polonsky . I. N. . O'Brien . D. M. . Kumer . J. B. . O'Dell . C. W. . 3 . 7 . 4 . April 2014 . 959–981 . 10.5194/amt-7-959-2014 . 2014AMT.....7..959P. free .
- GeoCARB, Geostationary Carbon Observatory . 13th International Workshop on Greenhouse Gas Measurements from Space. 6–8 June 2017. Helsinki, Finland. . Moore . Berrien III . 8 June 2017.
- Web site: SABER: A Pioneer in Atmospheric Science . . 2001 . NASA Langley Research Center . 2019-08-28 .
- Web site: ACE: Atmospheric Chemistry Experiment . . University of Waterloo . 2019-08-28 .
- Web site: Solar Occultation For Ice Experiment . GATS, Inc . 2010 . 2019-08-28.
- A regional CO2 observing system simulation experiment for the ASCENDS satellite mission . Atmospheric Chemistry and Physics . Wang . J. S. . Kawa . S. R. . Eluszkiewicz . J. . Baker . D. F. . Mountain . M. . Henderson . J. . Nehrkorn . T. . Zaccheo . T. S. . 3 . 14 . 23 . December 2014 . 12897–12914 . 10.5194/acp-14-12897-2014 . 2014ACP....1412897W. free .
- The Geostationary Fourier Transform Spectrometer . 2012 IEEE Aerospace Conference. 3–10 March 2012. Big Sky, Montana. . Key . Richard . Sander . Stanley . Eldering . Annmarie . Rider . David . Blavier . Jean-Francois . Bekker . Dmitriy . Wu . Yen-Hung . Manatt . Ken . 3 . 2012 . 10.1109/AERO.2012.6187164.
- Web site: AIM-North The Atmospheric Imaging Mission for Northern regions . AIM-North.ca . 11 May 2018 .
- Nassar. R.. McLinden. C.. Sioris. C.. McElroy. C.T.. Mendonca. J.. Tamminen. J.. MacDonald. C.G.. Adams. C.. Boisvenue. C.. al. et.. 3 . The Atmospheric Imaging Mission for Northern Regions: AIM-North. Canadian Journal of Remote Sensing. 45. 3–4. 2019. 781–811. 10.1080/07038992.2019.1643707. 2019CaJRS..45..423N. free.
- Bovensmann. H.. Buchwitz. M.. Burrows. J. P.. Reuter. M.. Krings. T.. Gerilowski. K.. Schneising. O.. Heymann. J.. Tretner. A.. Erzinger. J.. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmospheric Measurement Techniques. 3. 4. 2010. 423–442. 1867-8548. 10.5194/amt-3-781-2010. 2010AMT.....3..781B. free.