Solynta Explained

Solynta
Type:Private
Industry:Biotechnology
Founded:2006
Founder:Hein Kruyt, Pim Lindhout, Theo Schotte, and Johan Trouw
Hq Location City:Wageningen
Hq Location Country:Netherlands

Solynta is a Dutch biotechnology company that specializes in hybrid potato breeding. It is headquartered in Wageningen, Gelderland, the Netherlands.

Overview

Solynta was founded by Hein Kruyt,[1] Pim Lindhout, Theo Schotte and Johan Trouw[2] in 2006.[3] Solynta has been focusing on developing potato hybrids through breeding.

Technology

Hybrid breeding allows a breeder to combine in an easy way favorable traits from one parental line A with other desired traits from parental line B in its F1 offspring. This requires potato plants which are self-compatible and diploid, that can be used to generate the parental lines. To this end, Solynta crossed in 2008 a diploid potato with Solanum chacoense to start hybrid breeding.

The first step is to develop parental lines that are homozygous. Although potato is very heterozygous,[4] it is possible to generate homozygous potato lines.[5] [6] [7]

Self-compatible diploid potato was found by Hosaka and Hanneman in the Solanum chacoense used by Solynta.[8] The first results of the breeding efforts were published in 2011 by Lindhout et al.,[5] a few years later this potential of hybrid breeding in potato was acknowledged by the US scientific community.[9] Further tails of the breeding process, including the original donors have been described in Lindhout et al., 2018.[10] The mechanisms of self-compatibility in potato have recently been unraveled simultaneously by Eggers et al.[11] and Ma et al., identifying the Sli-gene.[12]

Meijer et al. (2018)[13] and Prinzenberg et al. (2018)[14] showed that using the potato breeding material of Solynta, fast and targeted progress on breeding for specific traits could be achieved. In 2017, Solynta showed in a program called HiSPoB[15] that it was able to introduce a double stack phytophthora resistance in their hybrid material, which was publicly demonstrated (Su et al. 2020).[16] With this demonstration the principle of marker-assisted breeding, known and applied in other major crops, was demonstrated for the first time for potato. Solynta's potato breeding techniques include F1 hybrid potato breeding.[17] [5]

Research collaborations

Solynta has participated in a number of scientific collaborations and networks, in order to gain experience with the technology and to allow public researchers to work with genetic material made available by Solynta.

For public research purposes, the diploid self-compatible line "Solyntus" was released to the scientific community in collaboration with Wageningen UR – Plant Breeding.[23] Genetic material from Solynta was used by groups in the UK[24] and Sweden[25] to perform research on fundamental aspects of potato biology. The collaborations have led to an acknowledgment by the public scientific community for the openness and transparency of Solynta.[26]

The Sli gene was recently cloned by Wageningen University and Solynta in 2021, which will allow for faster and more focused breeding.[27] [28] It primarily focuses on Hybrid True Potato Seeds (HTPS) that are not genetically modified.[29] [1] Using potato seeds, 25 grams of seeds can be utilized in place of 2500 kg of tubers as used in traditional potato planting.[30] This method of potato breeding received a U.S. patent in 2020.[31]

Solynta has worked on developing on a late blight-resistant potato variety[32] using cross-breeding.[33] Scientists at the company have also worked on published genome sequences of potatoes.[34]

Impact and further research

Two patents have been granted on hybrid breeding technology, one in the US in 2020.[35] Solynta signed a collaboration with the largest potato starch processor, AVEBE in 2021. Their joint goal is to develop hybrid potato varieties with added value for processing starch and other ingredients, while maintaining a sustainable crop production.[36]

First variety registrations were obtained in Zimbabwe (2021) and Kenya (2023). A collaboration agreement with seed-treatment specialist Incotec was signed in 2022.

The case of hybrid potato breeding has led to a number of studies, initiated by Rathenau Institute (Beumer & Edelenbosch, 2019; Edelenbosch & Munnichs, 2020).[37] [38]

Solynta's model of using and regulating ownership of newly developed technologies is discussed in Beumer et al.'s framework of Commons.[39] The framework states there is a diversity of genetic material available and accessible and supports a scientific basis for further development of the potato value chain.[40]

Potato hybrid breeding trials have been carried out in the DR Congo (in Ituri Province),[41] Rwanda,[42] and Mozambique (in Angónia District, Tete Province).[43] An early hybrid potato growing trial using diploid hybrids in East Africa showed promising yield and disease resistance.[44]

Notes and References

  1. Web site: Solynta raises €21M to "unlock the true potential" of the humble potato; here's how. Silicon Canals. August 6, 2021.
  2. Web site: Solynta, Incotec Form Partnership to Optimize Performance of Hybrid True Potato Seeds. Matt. Hopkins. May 16, 2022.
  3. The new potato. Erik. Stokstad. February 8, 2019. Science. 363. 6427. 574–577. 10.1126/science.363.6427.574. 30733400 . 2019Sci...363..574S . 73425570 .
  4. Zhou . Qian . Tang . Dié . Huang . Wu . Yang . Zhongmin . Zhang . Yu . Hamilton . John P. . Visser . Richard G. F. . Bachem . Christian W. B. . Robin Buell . C. . Zhang . Zhonghua . Zhang . Chunzhi . Huang . Sanwen . Haplotype-resolved genome analyses of a heterozygous diploid potato . Nature Genetics . October 2020 . 52 . 10 . 1018–1023 . 10.1038/s41588-020-0699-x . 32989320 . 7527274 . 222167173 .
  5. Lindhout . Pim . Meijer . Dennis . Schotte . Theo . Hutten . Ronald C. B. . Visser . Richard G. F. . van Eck . Herman J. . Towards F1 Hybrid Seed Potato Breeding . Potato Research . December 2011 . 54 . 4 . 301–312 . 10.1007/s11540-011-9196-z . 39719359 . free .
  6. Leisner . Courtney P. . Hamilton . John P. . Crisovan . Emily . Manrique‐Carpintero . Norma C. . Marand . Alexandre P. . Newton . Linsey . Pham . Gina M. . Jiang . Jiming . Douches . David S. . Jansky . Shelley H. . Buell . C. Robin . Genome sequence of M6, a diploid inbred clone of the high‐glycoalkaloid‐producing tuber‐bearing potato species Solanum chacoense, reveals residual heterozygosity . The Plant Journal . May 2018 . 94 . 3 . 562–570 . 10.1111/tpj.13857 . 29405524 . 4924888 . free .
  7. van Lieshout . Natascha . van der Burgt . Ate . de Vries . Michiel E. . ter Maat . Menno . Eickholt . David . Esselink . Danny . van Kaauwen . Martijn P. W. . Kodde . Linda P. . Visser . Richard G. F. . Lindhout . Pim . Finkers . Richard . Solyntus, the New Highly Contiguous Reference Genome for Potato (Solanum tuberosum) . G3: Genes, Genomes, Genetics . October 2020 . 10 . 10 . 3489–3495 . 10.1534/g3.120.401550 . 32759330 . 7534448 . 221038196 .
  8. Hosaka . Kazuyoshi . E. Hanneman, Jr. . Robert . Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers . Euphytica . 1998 . 103 . 2 . 265–271 . 10.1023/A:1018380725160 . 29400272 .
  9. Jansky . Shelley H. . Charkowski . Amy O. . Douches . David S. . Gusmini . Gabe . Richael . Craig . Bethke . Paul C. . Spooner . David M. . Novy . Richard G. . De Jong . Hielke . De Jong . Walter S. . Bamberg . John B. . Thompson . A. L. . Bizimungu . Benoit . Holm . David G. . Brown . Chuck R. . Haynes . Kathleen G. . Sathuvalli . Vidyasagar R. . Veilleux . Richard E. . Miller . J. Creighton . Bradeen . Jim M. . Jiang . Jiming . Reinventing Potato as a Diploid Inbred Line-Based Crop . Crop Science . July 2016 . 56 . 4 . 1412–1422 . 10.2135/cropsci2015.12.0740 . 10919/97862 . free .
  10. Book: 10.19103/as.2016.0016.04 . Hybrid potato breeding for improved varieties . Achieving sustainable cultivation of potatoes Volume 1 . Burleigh Dodds Series in Agricultural Science . 2018 . Lindhout . Pim . De Vries . Michiel . Ter Maat . Menno . Ying . Su . Viquez-Zamora . Marcela . Van Heusden . Sjaak . 99–122 . 978-1-78676-100-2 . 188905534 .
  11. Eggers . Ernst-Jan . van der Burgt . Ate . van Heusden . Sjaak A. W. . de Vries . Michiel E. . Visser . Richard G. F. . Bachem . Christian W. B. . Lindhout . Pim . Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato . Nature Communications . 6 July 2021 . 12 . 1 . 4141 . 10.1038/s41467-021-24267-6 . 34230471 . 8260583 . 2021NatCo..12.4141E .
  12. Ma . Ling . Zhang . Chunzhi . Zhang . Bo . Tang . Fei . Li . Futing . Liao . Qinggang . Tang . Die . Peng . Zhen . Jia . Yuxin . Gao . Meng . Guo . Han . Zhang . Jinzhe . Luo . Xuming . Yang . Huiqin . Gao . Dongli . Lucas . William J. . Li . Canhui . Huang . Sanwen . Shang . Yi . A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes . Nature Communications . 6 July 2021 . 12 . 1 . 4142 . 10.1038/s41467-021-24266-7 . 34230469 . 8260799 . 2021NatCo..12.4142M .
  13. Meijer . D. . Viquez-Zamora . M. . van Eck . H. J. . Hutten . R. C. B. . Su . Y. . Rothengatter . R. . Visser . R. G. F. . Lindhout . W. H. . van Heusden . A. W. . QTL mapping in diploid potato by using selfed progenies of the cross S. tuberosum × S. chacoense . Euphytica . July 2018 . 214 . 7 . 121 . 10.1007/s10681-018-2191-6 . 30996395 . 6434985 .
  14. Prinzenberg . Aina E. . Víquez-Zamora . Marcela . Harbinson . Jeremy . Lindhout . Pim . van Heusden . Sjaak . Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato . Physiologia Plantarum . October 2018 . 164 . 2 . 163–175 . 10.1111/ppl.12689 . 29314007 . free .
  15. Web site: H2020 – SME instrument. H2020 – SME instrument.
  16. Su . Ying . Viquez-Zamora . Marcela . den Uil . Danielle . Sinnige . Jarno . Kruyt . Hein . Vossen . Jack . Lindhout . Pim . van Heusden . Sjaak . Introgression of Genes for Resistance against Phytophthora infestans in Diploid Potato . American Journal of Potato Research . February 2020 . 97 . 1 . 33–42 . 10.1007/s12230-019-09741-8 . 208650047 .
  17. Web site: Solynta | PotatoPro. October 16, 2013. www.potatopro.com.
  18. Web site: SolACE. www.solace-eu.net.
  19. Web site: CORDIS | European Commission.
  20. Web site: SKY HIGH: Vertical farming, a revolution in plant production | NWO. www.nwo.nl. 28 October 2019 .
  21. Web site: Responsible innovation in Dutch potato breeding | NWO. www.nwo.nl. September 2015 .
  22. Web site: Holland Innovative Potato – Dé kraamkamer van vernieuwing in de aardappelketen.
  23. Web site: Solyntus genome sequence consortium. www.plantbreeding.wur.nl.
  24. Witek . Kamil . Jupe . Florian . Witek . Agnieszka I . Baker . David . Clark . Matthew D . Jones . Jonathan D G . Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing . Nature Biotechnology . June 2016 . 34 . 6 . 656–660 . 10.1038/nbt.3540 . 27111721 . 21764939 .
  25. Tissue Culture and Refreshment Techniques for Improvement of Transformation in Local Tetraploid and Diploid Potato with Late Blight Resistance as an Example. Eu Sheng. Wang. Nam Phuong. Kieu. Marit. Lenman. Erik. Andreasson. June 6, 2020. Plants. 9. 6. 695. 10.3390/plants9060695. 32486039. 7356882. free .
  26. Breeding Diploid F1 Hybrid Potatoes for Propagation from Botanical Seed (TPS): Comparisons with Theory and Other Crops. John E.. Bradshaw. January 6, 2022. Plants. 11. 9. 1121. 10.3390/plants11091121. 35567122. 9101707. free .
  27. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato. Ernst-Jan. Eggers. Ate. van der Burgt. Sjaak A. W.. van Heusden. Michiel E.. de Vries. Richard G. F.. Visser. Christian W. B.. Bachem. Pim. Lindhout. July 6, 2021. Nature Communications. 12. 1. 4141 . 10.1038/s41467-021-24267-6. 34230471 . 8260583 . 2021NatCo..12.4141E .
  28. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes. Ling. Ma. Chunzhi. Zhang. Bo. Zhang. Fei. Tang. Futing. Li. Qinggang. Liao. Die. Tang. Zhen. Peng. Yuxin. Jia. Meng. Gao. Han. Guo. Jinzhe. Zhang. Xuming. Luo. Huiqin. Yang. Dongli. Gao. William J.. Lucas. Canhui. Li. Sanwen. Huang. Yi. Shang. July 6, 2021. Nature Communications. 12. 1. 4142. 10.1038/s41467-021-24266-7. 34230469. 8260799. 2021NatCo..12.4142M .
  29. Web site: First large-scale Solynta Hybrid seed potato trials highly successful | PotatoPro. April 17, 2017. www.potatopro.com.
  30. Web site: Solynta. www.innovationindustries.com.
  31. Web site: Solynta Granted U.S. Patent for Hybrid True Potato Seed Development. Compiled by. Staff. January 13, 2020. Seed World.
  32. Web site: Solynta develops a blight resistant potato variety (non-GMO) | PotatoPro. August 22, 2017. www.potatopro.com.
  33. Web site: Solynta's revolutionary hybrid breeding technology protects potato from late blight by multi-resistance | PotatoPro. August 23, 2017. www.potatopro.com.
  34. Web site: Complex potato genome further unveiled – Solynta. June 2019 .
  35. Web site: Hybrid seed potato breeding.
  36. Web site: Royal Avebe and Solynta join forces: hybrid breeding in starch potato production. April 15, 2021. Avebe.
  37. Beumer . Koen . Edelenbosch . Rosanne . Hybrid potato breeding: A framework for mapping contested socio-technical futures . Futures . May 2019 . 109 . 227–239 . 10.1016/j.futures.2019.01.004 . 1874/384722 . 150069773 . free .
  38. Edelenbosch, R. & G. Munnichs (2020). De aardappel heeft de toekomst – Drie scenario's over de hybride aardappel en de wereldvoedselvoorziening. Den Haag: Rathenau Instituut.
  39. Beumer . Koen . Stemerding . Dirk . Swart . Jac. A. A. . Innovation and the commons: lessons from the governance of genetic resources in potato breeding . Agriculture and Human Values . June 2021 . 38 . 2 . 525–539 . 10.1007/s10460-020-10169-8 . 225113969 . free .
  40. Beumer . Koen . Stemerding . Dirk . A breeding consortium to realize the potential of hybrid diploid potato for food security . Nature Plants . 23 November 2021 . 7 . 12 . 1530–1532 . 10.1038/s41477-021-01035-4 . 34815537 . 1874/416028 . 244529204 . free .
  41. . Potatoes grown from seeds yield big harvests . Appropriate Technology . 44 . 2 . June 2017 . 11–12 .
  42. Web site: The New Times: Rwanda pilots 'revolutionary' potato seeds – Solynta. 3 January 2020 .
  43. Web site: first successful Hybrid true potato seed (HTPS) trial of solynta and solidaridad in mozambique shows great potential – Solynta. 22 April 2020 .
  44. de Vries . Michiel . ter Maat . Menno . Lindhout . Pim . The potential of hybrid potato for East-Africa . Open Agriculture . 2016 . 1 . 1 . 151–156 . 10.1515/opag-2016-0020 . 4567960 . free .