Space-based solar power explained

See also: Solar panels on spacecraft. Space-based solar power (SBSP, SSP) is the concept of collecting solar power in outer space with solar power satellites (SPS) and distributing it to Earth. Its advantages include a higher collection of energy due to the lack of reflection and absorption by the atmosphere, the possibility of very little night, and a better ability to orient to face the Sun. Space-based solar power systems convert sunlight to some other form of energy (such as microwaves) which can be transmitted through the atmosphere to receivers on the Earth's surface.

Solar panels on spacecraft have been in use since 1958, when Vanguard I used them to power one of its radio transmitters; however, the term (and acronyms) above are generally used in the context of large-scale transmission of energy for use on Earth.

Various SBSP proposals have been researched since the early 1970s,[1] [2] but none is economically viable with the space launch costs. Some technologists propose lowering launch costs with space manufacturing or with radical new space launch technologies other than rocketry.

Besides cost, SBSP also introduces several technological hurdles, including the problem of transmitting energy from orbit. Since wires extending from Earth's surface to an orbiting satellite are not feasible with current technology, SBSP designs generally include the wireless power transmission with its associated conversion inefficiencies, as well as land use concerns for antenna stations to receive the energy at Earth's surface. The collecting satellite would convert solar energy into electrical energy, power a microwave transmitter or laser emitter, and transmit this energy to a collector (or microwave rectenna) on Earth's surface. Contrary to appearances in fiction, most designs propose beam energy densities that are not harmful if human beings were to be inadvertently exposed, such as if a transmitting satellite's beam were to wander off-course. But the necessarily vast size of the receiving antennas would still require large blocks of land near the end users. The service life of space-based collectors in the face of long-term exposure to the space environment, including degradation from radiation and micrometeoroid damage, could also become a concern for SBSP.

As of 2020, SBSP is being actively pursued by Japan, China,[3] Russia, India, the United Kingdom,[4] and the US.

In 2008, Japan passed its Basic Space Law which established space solar power as a national goal.[5] JAXA has a roadmap to commercial SBSP.

In 2015, the China Academy for Space Technology (CAST) showcased its roadmap at the International Space Development Conference. In February 2019, Science and Technology Daily (科技日报, Keji Ribao), the official newspaper of the Ministry of Science and Technology of the People's Republic of China, reported that construction of a testing base had started in Chongqing's Bishan District. CAST vice-president Li Ming was quoted as saying China expects to be the first nation to build a working space solar power station with practical value. Chinese scientists were reported as planning to launch several small- and medium-sized space power stations between 2021 and 2025.[6] [7] In December 2019, Xinhua News Agency reported that China plans to launch a 200-tonne SBSP station capable of generating megawatts (MW) of electricity to Earth by 2035.[8]

In May 2020, the US Naval Research Laboratory conducted its first test of solar power generation in a satellite.[9] In August 2021, the California Institute of Technology (Caltech) announced that it planned to launch a SBSP test array by 2023, and at the same time revealed that Donald Bren and his wife Brigitte, both Caltech trustees, had been since 2013 funding the institute's Space-based Solar Power Project, donating over $100 million.[10] [11] A Caltech team successfully demonstrated beaming power to earth in 2023.[11]

History

In 1941, science fiction writer Isaac Asimov published the science fiction short story "Reason", in which a space station transmits energy collected from the Sun to various planets using microwave beams. The SBSP concept, originally known as satellite solar-power system (SSPS), was first described in November 1968.[12] In 1973 Peter Glaser was granted U.S. patent number 3,781,647 for his method of transmitting power over long distances (e.g. from an SPS to Earth's surface) using microwaves from a very large antenna (up to one square kilometer) on the satellite to a much larger one, now known as a rectenna, on the ground.

Glaser then was a vice president at Arthur D. Little, Inc. NASA signed a contract with ADL to lead four other companies in a broader study in 1974. They found that, while the concept had several major problems – chiefly the expense of putting the required materials in orbit and the lack of experience on projects of this scale in space – it showed enough promise to merit further investigation and research.[13]

Concept Development and Evaluation Program

Between 1978 and 1986, the Congress authorized the Department of Energy (DoE) and NASA to jointly investigate the concept. They organized the Satellite Power System Concept Development and Evaluation Program.[14] [15] The study remains the most extensive performed to date (budget $50 million).[16] Several reports were published investigating the engineering feasibility of such a project. They include:

Discontinuation

The project was not continued with the change in administrations after the 1980 United States elections. The Office of Technology Assessment concluded that "Too little is currently known about the technical, economic, and environmental aspects of SPS to make a sound decision whether to proceed with its development and deployment. In addition, without further research an SPS demonstration or systems-engineering verification program would be a high-risk venture."[34]

In 1997, NASA conducted its "Fresh Look" study to examine the modern state of SBSP feasibility. In assessing "What has changed" since the DOE study, NASA asserted that the "US National Space Policy now calls for NASA to make significant investments in technology (not a particular vehicle) to drive the costs of ETO [Earth to Orbit] transportation down dramatically. This is, of course, an absolute requirement of space solar power."[35]

Conversely, Pete Worden of NASA claimed that space-based solar is about five orders of magnitude more expensive than solar power from the Arizona desert, with a major cost being the transportation of materials to orbit. Worden referred to possible solutions as speculative and not available for decades at the earliest.[36]

On November 2, 2012, China proposed a space collaboration with India that mentioned SBSP, "may be Space-based Solar Power initiative so that both India and China can work for long term association with proper funding along with other willing space faring nations to bring space solar power to earth."[37]

Exploratory Research and Technology program

See main article: Space Solar Power Exploratory Research and Technology program.

In 1999, NASA initiated its Space Solar Power Exploratory Research and Technology program (SERT) for the following purposes:

SERT went about developing a solar power satellite (SPS) concept for a future gigawatt space power system, to provide electrical power by converting the Sun's energy and beaming it to Earth's surface, and provided a conceptual development path that would utilize current technologies. SERT proposed an inflatable photovoltaic gossamer structure with concentrator lenses or solar heat engines to convert sunlight into electricity. The program looked both at systems in Sun-synchronous orbit and geosynchronous orbit. Some of SERT's conclusions:

Japan Aerospace Exploration Agency

The May 2014 IEEE Spectrum magazine carried a lengthy article "It's Always Sunny in Space" by Susumu Sasaki.[39] The article stated, "It's been the subject of many previous studies and the stuff of sci-fi for decades, but space-based solar power could at last become a reality—and within 25 years, according to a proposal from researchers at the Tokyo-based Japan Aerospace Exploration Agency (JAXA)."

JAXA announced on 12 March 2015 that they wirelessly beamed 1.8 kilowatts 50 meters to a small receiver by converting electricity to microwaves and then back to electricity. This is the standard plan for this type of power.[40] [41] On 12 March 2015 Mitsubishi Heavy Industries demonstrated transmission of 10 kilowatts (kW) of power to a receiver unit located at a distance of 500 meters (m) away.[42]

Advantages and disadvantages

Advantages

The SBSP concept is attractive because space has several major advantages over the Earth's surface for the collection of solar power:

Disadvantages

The SBSP concept also has a number of problems:

Design

Space-based solar power essentially consists of three elements:

  1. collecting solar energy in space with reflectors or inflatable mirrors onto solar cells or heaters for thermal systems
  2. wireless power transmission to Earth via microwave or laser
  3. receiving power on Earth via a rectenna, a microwave antenna

The space-based portion will not need to support itself against gravity (other than relatively weak tidal stresses). It needs no protection from terrestrial wind or weather, but will have to cope with space hazards such as micrometeors and solar flares. Two basic methods of conversion have been studied: photovoltaic (PV) and solar dynamic (SD). Most analyses of SBSP have focused on photovoltaic conversion using solar cells that directly convert sunlight into electricity. Solar dynamic uses mirrors to concentrate light on a boiler. The use of solar dynamic could reduce mass per watt. Wireless power transmission was proposed early on as a means to transfer energy from collection to the Earth's surface, using either microwave or laser radiation at a variety of frequencies.

Microwave power transmission

William C. Brown demonstrated in 1964, during Walter Cronkite's CBS News program, a microwave-powered model helicopter that received all the power it needed for flight from a microwave beam. Between 1969 and 1975, Bill Brown was technical director of a JPL Raytheon program that beamed 30 kW of power over a distance of 1miles at 9.6% efficiency.[60] [61]

Microwave power transmission of tens of kilowatts has been well proven by existing tests at Goldstone in California (1975)[61] [62] [63] and Grand Bassin on Reunion Island (1997).[64]

More recently, microwave power transmission has been demonstrated, in conjunction with solar energy capture, between a mountaintop in Maui and the island of Hawaii (92 miles away), by a team under John C. Mankins.[65] [66] Technological challenges in terms of array layout, single radiation element design, and overall efficiency, as well as the associated theoretical limits are presently a subject of research, as it was demonstrated by the Special Session on "Analysis of Electromagnetic Wireless Systems for Solar Power Transmission" held during the 2010 IEEE Symposium on Antennas and Propagation.[67] In 2013, a useful overview was published, covering technologies and issues associated with microwave power transmission from space to ground. It includes an introduction to SPS, current research and future prospects.[68] Moreover, a review of current methodologies and technologies for the design of antenna arrays for microwave power transmission appeared in the Proceedings of the IEEE.[69]

Laser power beaming

Laser power beaming was envisioned by some at NASA as a stepping stone to further industrialization of space. In the 1980s, researchers at NASA worked on the potential use of lasers for space-to-space power beaming, focusing primarily on the development of a solar-powered laser. In 1989, it was suggested that power could also be usefully beamed by laser from Earth to space. In 1991, the SELENE project (SpacE Laser ENErgy) had begun, which included the study of laser power beaming for supplying power to a lunar base. The SELENE program was a two-year research effort, but the cost of taking the concept to operational status was too high, and the official project ended in 1993 before reaching a space-based demonstration.[70]

Laser Solar Satellites

Laser Solar Satellites are smaller in size, meaning that they have to work as a group with other similar satellites. There are many pros to Laser Solar Satellites, specifically regarding their lower overall costs in comparison to other satellites. While the cost is lower than other satellites, there are various safety concerns, and other concerns regarding this satellite. [71] Laser-emitting solar satellites only need to venture about 400 km into space, but because of their small generation capacity, hundreds or thousands of laser satellites would need to be launched in order to create a sustainable impact. A single satellite launch can range from fifty to four hundred million dollars. Lasers could be helpful for the energy from the sun harvested in space, to be returned back to Earth in order for terrestrial power demands to be met. [72]

Orbital location

The main advantage of locating a space power station in geostationary orbit is that the antenna geometry stays constant, and so keeping the antennas lined up is simpler. Another advantage is that nearly continuous power transmission is immediately available as soon as the first space power station is placed in orbit, LEO requires several satellites before they are producing nearly continuous power.

Power beaming from geostationary orbit by microwaves carries the difficulty that the required 'optical aperture' sizes are very large. For example, the 1978 NASA SPS study required a 1 km diameter transmitting antenna and a 10 km diameter receiving rectenna for a microwave beam at 2.45 GHz. These sizes can be somewhat decreased by using shorter wavelengths, although they have increased atmospheric absorption and even potential beam blockage by rain or water droplets. Because of the thinned array curse, it is not possible to make a narrower beam by combining the beams of several smaller satellites. The large size of the transmitting and receiving antennas means that the minimum practical power level for an SPS will necessarily be high; small SPS systems will be possible, but uneconomic.

A collection of LEO (low Earth orbit) space power stations has been proposed as a precursor to GEO (geostationary orbit) space-based solar power.[73]

Earth-based receiver

The Earth-based rectenna would likely consist of many short dipole antennas connected via diodes. Microwave broadcasts from the satellite would be received in the dipoles with about 85% efficiency.[74] With a conventional microwave antenna, the reception efficiency is better, but its cost and complexity are also considerably greater. Rectennas would likely be several kilometers across.

In space applications

A laser SBSP could also power a base or vehicles on the surface of the Moon or Mars, saving on mass costs to land the power source. A spacecraft or another satellite could also be powered by the same means. In a 2012 report presented to NASA on space solar power, the author mentions another potential use for the technology behind space solar power could be for solar electric propulsion systems that could be used for interplanetary human exploration missions.[75] [76] [77]

Launch costs

One problem with the SBSP concept is the cost of space launches and the amount of material that would need to be launched.

Much of the material launched need not be delivered to its eventual orbit immediately, which raises the possibility that high efficiency (but slower) engines could move SPS material from LEO to GEO at an acceptable cost. Examples include ion thrusters or nuclear propulsion. Infrastructure including solar panels, power converters, and power transmitters will have to be built in order to begin the process. This will be extremely expensive and maintaining them will cost even more.

To give an idea of the scale of the problem, assuming a solar panel mass of 20 kg per kilowatt (without considering the mass of the supporting structure, antenna, or any significant mass reduction of any focusing mirrors) a 4 GW power station would weigh about 80,000 metric tons,[78] all of which would, in current circumstances, be launched from the Earth. This is, however, far from the state of the art for flown spacecraft, which as of 2015 was 150 W/kg (6.7 kg/kW), and improving rapidly.[79] Very lightweight designs could likely achieve 1 kg/kW,[80] meaning 4,000 metric tons for the solar panels for the same 4 GW capacity station. Beyond the mass of the panels, overhead (including boosting to the desired orbit and stationkeeping) must be added.

Launch costs for 4 GW to LEO! ! 1 kg/kW! 5 kg/kW! 20 kg/kW
scope=row $1/kg (Minimum cost at ~$0.13/kWh power, 100% efficiency)$4M $20M $80M
scope=row $2000/kg (ex: Falcon Heavy)$8B $40B $160B
scope=row $10000/kg (ex: Ariane V)$40B $200B $800B

To these costs must be added the environmental impact of heavy space launch missions, if such costs are to be used in comparison to earth-based energy production. For comparison, the direct cost of a new coal[81] or nuclear power plant ranges from $3 billion to $6 billion per GW (not including the full cost to the environment from emissions or storage of spent nuclear fuel, respectively).

Building from space

From lunar materials launched in orbit

Gerard O'Neill, noting the problem of high launch costs in the early 1970s, proposed building the SPS's in orbit with materials from the Moon.[82] Launch costs from the Moon are potentially much lower than from Earth because of the lower gravity and lack of atmospheric drag. This 1970s proposal assumed the then-advertised future launch costing of NASA's space shuttle. This approach would require substantial upfront capital investment to establish mass drivers on the Moon.[83] Nevertheless, on 30 April 1979, the Final Report ("Lunar Resources Utilization for Space Construction") by General Dynamics' Convair Division, under NASA contract NAS9-15560, concluded that use of lunar resources would be cheaper than Earth-based materials for a system of as few as thirty solar power satellites of 10 GW capacity each.[84]

In 1980, when it became obvious NASA's launch cost estimates for the space shuttle were grossly optimistic, O'Neill et al. published another route to manufacturing using lunar materials with much lower startup costs.[85] This 1980s SPS concept relied less on human presence in space and more on partially self-replicating systems on the lunar surface under remote control of workers stationed on Earth. The high net energy gain of this proposal derives from the Moon's much shallower gravitational well.

Having a relatively cheap per pound source of raw materials from space would lessen the concern for low mass designs and result in a different sort of SPS being built. The low cost per pound of lunar materials in O'Neill's vision would be supported by using lunar material to manufacture more facilities in orbit than just solar power satellites. Advanced techniques for launching from the Moon may reduce the cost of building a solar power satellite from lunar materials. Some proposed techniques include the lunar mass driver and the lunar space elevator, first described by Jerome Pearson.[86] It would require establishing silicon mining and solar cell manufacturing facilities on the Moon.

On the Moon

Physicist Dr David Criswell suggests the Moon is the optimum location for solar power stations, and promotes lunar-based solar power.[87] [88] [89] The main advantage he envisions is construction largely from locally available lunar materials, using in-situ resource utilization, with a teleoperated mobile factory and crane to assemble the microwave reflectors, and rovers to assemble and pave solar cells,[90] which would significantly reduce launch costs compared to SBSP designs. Power relay satellites orbiting around earth and the Moon reflecting the microwave beam are also part of the project. A demo project of 1 GW starts at $50 billion.[91] The Shimizu Corporation use combination of lasers and microwave for the Luna Ring concept, along with power relay satellites.[92] [93]

From an asteroid

Asteroid mining has also been seriously considered. A NASA design study[94] evaluated a 10,000-ton mining vehicle (to be assembled in orbit) that would return a 500,000-ton asteroid fragment to geostationary orbit. Only about 3,000 tons of the mining ship would be traditional aerospace-grade payload. The rest would be reaction mass for the mass-driver engine, which could be arranged to be the spent rocket stages used to launch the payload. Assuming that 100% of the returned asteroid was useful, and that the asteroid miner itself couldn't be reused, that represents nearly a 95% reduction in launch costs. However, the true merits of such a method would depend on a thorough mineral survey of the candidate asteroids; thus far, we have only estimates of their composition.[95] One proposal is to capture the asteroid Apophis into Earth orbit and convert it into 150 solar power satellites of 5 GW each or the larger asteroid 1999 AN10, which is 50 times the size of Apophis and large enough to build 7,500 5-gigawatt solar power satellites[96]

Gallery

Safety

The potential exposure of humans and animals on the ground to the high power microwave beams is a significant concern with these systems. At the Earth's surface, a suggested SPSP microwave beam would have a maximum intensity at its center, of 23 mW/cm2.[97] While this is less than 1/4 the solar irradiation constant, microwaves penetrate much deeper into tissue than sunlight, and at this level would exceed the current United States Occupational Safety and Health Act (OSHA) workplace exposure limits for microwaves at 10 mW/cm2[98] At 23 mW/cm2, studies show humans experience significant deficits in spatial learning and memory.[99] If the diameter of the proposed SPSP array is increased by 2.5x, the energy density on the ground increases to 1 W/cm2. At this level, the median lethal dose for mice is 30-60 seconds of microwave exposure.[100] While designing an array with 2.5x larger diameter should be avoided, the dual-use military potential of such a system is readily apparent.

With good array sidelobe design, outside the receiver may be less than the OSHA long-term levels [101] as over 95% of the beam energy will fall on the rectenna. However, any accidental or intentional mis-pointing of the satellite could be deadly to life on Earth within the beam.

Exposure to the beam can be minimized in various ways. On the ground, assuming the beam is pointed correctly, physical access must be controllable (e.g., via fencing). Typical aircraft flying through the beam provide passengers with a protective metal shell (i.e., a Faraday Cage), which will intercept the microwaves. Other aircraft (balloons, ultralight, etc.) can avoid exposure by using controlled airspace, as is currently done for military and other controlled airspace. In addition, a design constraint is that the microwave beam must not be so intense as to injure wildlife, particularly birds. Suggestions have been made to locate rectennas offshore,[102] [103] but this presents serious problems, including corrosion, mechanical stresses, and biological contamination.

A commonly proposed approach to ensuring fail-safe beam targeting is to use a retrodirective phased array antenna/rectenna. A "pilot" microwave beam emitted from the center of the rectenna on the ground establishes a phase front at the transmitting antenna. There, circuits in each of the antenna's subarrays compare the pilot beam's phase front with an internal clock phase to control the phase of the outgoing signal. If the phase offset to the pilot is chosen the same for all elements, the transmitted beam should be centered precisely on the rectenna and have a high degree of phase uniformity; if the pilot beam is lost for any reason (if the transmitting antenna is turned away from the rectenna, for example) the phase control value fails and the microwave power beam is automatically defocused.[104] Such a system would not focus its power beam very effectively anywhere that did not have a pilot beam transmitter. The long-term effects of beaming power through the ionosphere in the form of microwaves has yet to be studied.

Timeline

In the 20th century

In the 21st century

Non-typical configurations and architectural considerations

The typical reference system-of-systems involves a significant number (several thousand multi-gigawatt systems to service all or a significant portion of Earth's energy requirements) of individual satellites in GEO. The typical reference design for the individual satellite is in the 1-10 GW range and usually involves planar or concentrated solar photovoltaics (PV) as the energy collector / conversion. The most typical transmission designs are in the 1–10 GHz (2.45 or 5.8 GHz) RF band where there are minimum losses in the atmosphere. Materials for the satellites are sourced from, and manufactured on Earth and expected to be transported to LEO via re-usable rocket launch, and transported between LEO and GEO via chemical or electrical propulsion. In summary, the architecture choices are:

There are several interesting design variants from the reference system:

Alternate energy collection location: While GEO is most typical because of its advantages of nearness to Earth, simplified pointing and tracking, very small time in occultation, and scalability to meet all global demand several times over, other locations have been proposed:

Energy collection: The most typical designs for solar power satellites include photovoltaics. These may be planar (and usually passively cooled), concentrated (and perhaps actively cooled). However, there are multiple interesting variants.

Alternate satellite architecture: The typical satellite is a monolithic structure composed of a structural truss, one or more collectors, one or more transmitters, and occasionally primary and secondary reflectors. The entire structure may be gravity gradient stabilized. Alternative designs include:

Transmission: The most typical design for energy transmission is via an RF antenna at below 10 GHz to a rectenna on the ground. Controversy exists between the benefits of Klystrons, Gyrotrons, Magnetrons and solid state. Alternate transmission approaches include:

Materials and manufacturing: Typical designs make use of the developed industrial manufacturing system extant on Earth, and use Earth based materials both for the satellite and propellant. Variants include:

Method of installation / Transportation of Material to Energy Collection Location: In the reference designs, component material is launched via well-understood chemical rockets (usually fully reusable launch systems) to LEO, after which either chemical or electrical propulsion is used to carry them to GEO. The desired characteristics for this system is very high mass-flow at low total cost. Alternate concepts include:

In fiction

Space stations transmitting solar power have appeared in science-fiction works like Isaac Asimov's "Reason" (1941), that centers around the troubles caused by the robots operating the station. Asimov's short story "The Last Question" also features the use of SBSP to provide limitless energy for use on Earth.

Erc Kotani and John Maddox Roberts's 2000 novel The Legacy of Prometheus posits a race between several conglomerates to be the first to beam down a gigawatt of energy from a solar satellite in geosynchronous orbit.

In Ben Bova's novel PowerSat (2005), an entrepreneur strives to prove that his company's nearly completed power satellite and spaceplane (a means of getting maintenance crews to the satellite efficiently) are both safe and economically viable, while terrorists with ties to oil producing nations attempt to derail these attempts through subterfuge and sabotage.[144]

Various aerospace companies have also showcased imaginative future solar power satellites in their corporate vision videos, including Boeing,[145] Lockheed Martin,[146] and United Launch Alliance.[147]

The solar satellite is one of three means of producing energy in the browser-based game OGame. The city building game SimCity 2000 also features a Microwave Power Plant.

In the 1978 anime TV series Future Boy Conan, SBSP enables the country of Industria to develop geomagnetic weapons, more powerful than nuclear weapons, that destroy entire continents.

See also

References

The National Space Society maintains an extensive space solar power library of all major historical documents and studies associated with space solar power, and major news articles .

External links

Videos

Notes and References

  1. Web site: 15 April 2013 . Space-based solar power . ESA–Advanced Concepts Team . August 23, 2015.
  2. Web site: 6 March 2014 . Space-Based Solar Power . United States Department of Energy (DOE).
  3. Web site: China plans a solar power play in space that NASA abandoned decades ago . Eric Rosenbaum . Donovan Russo . March 17, 2019 . CNBC.com . 19 March 2019 .
  4. UK government commissions space solar power stations research . UK Space Agency . 14 November 2020 . gov.uk. 30 November 2020.
  5. Web site: Basic Plan for Space Policy. June 2, 2009. May 21, 2016.
  6. Web site: 我国有望率先建成空间太阳能电站-科技新闻-中国科技网首页 . 2021-08-18. www.stdaily.com.
  7. Web site: Needham. Kirsty. 2019-02-15. Plans for first Chinese solar power station in space revealed . 2021-08-18. The Sydney Morning Herald. en.
  8. Web site: China to build space-based solar power station by 2035 - Xinhua English.news.cn . https://web.archive.org/web/20191202081144/http://www.xinhuanet.com/english/2019-12/02/c_138599015.htm. dead. December 2, 2019. 2021-08-18. www.xinhuanet.com.
  9. Web site: Solar Power Experiment Launched by Navy Research Lab on X-37B Space Plane. May 27, 2020. Forbes.
  10. Web site: Caltech Announces Breakthrough $100 Million Gift to Fund Space-based Solar Power Project. 2021-08-18. California Institute of Technology. 3 August 2021. en.
  11. Web site: In a First, Caltech's Space Solar Power Demonstrator Wirelessly Transmits Power in Space. 2023-06-01. California Institute of Technology. 1 June 2023. en.
  12. 10.1126/science.162.3856.857 . 17769070 . Power from the Sun: Its Future . Science . 162 . 3856 . 857–61 . 1968 . Glaser . P. E. . 1968Sci...162..857G .
  13. [Peter Glaser|Glaser, P. E.]
  14. Web site: Satellite Power System Concept Development and Evaluation Program July 1977 - August 1980. DOE/ET-0034, February 1978. 62 pages. 2009-02-20. 2017-03-13. https://web.archive.org/web/20170313135341/http://www.nss.org/settlement/ssp/library/1978DOESPS-ProgramPlanJuly1977-August1980.pdf. dead.
  15. Web site: Satellite Power System Concept Development and Evaluation Program Reference System Report. DOE/ER-0023, October 1978. 322. 2009-02-20. 2017-03-13. https://web.archive.org/web/20170313135400/http://www.nss.org/settlement/ssp/library/1978DOESPS-ReferenceSystemReport.pdf. dead.
  16. http://www.nss.org/settlement/ssp/library/2000-testimony-JohnMankins.htm Statement of John C. Mankins
  17. Web site: Satellite Power System (SPS) Resource Requirements (Critical Materials, Energy, and Land). HCP/R-4024-02, October 1978.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208220252/http://www.nss.org/settlement/ssp/library/1978DOESPS-ResourceRequirements.pdf. dead.
  18. Web site: Satellite Power System (SPS) Financial/Management Scenarios. Prepared by J. Peter Vajk. HCP/R-4024-03, October 1978. 69 pages. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208220033/http://www.nss.org/settlement/ssp/library/1978DOESPS-FinancialManagementScenarios(Vajk).pdf. dead.
  19. Web site: Satellite Power System (SPS) Financial/Management Scenarios. Prepared by Herbert E. Kierulff. HCP/R-4024-13, October 1978. 66 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208223021/http://www.nss.org/settlement/ssp/library/1978DOESPS-FinancialManagementScenarios(Kierolff).pdf. dead.
  20. Web site: Satellite Power System (SPS) Public Acceptance. HCP/R-4024-04, October 1978. 85 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208222459/http://www.nss.org/settlement/ssp/library/1978DOESPS-PublicAcceptance.pdf. dead.
  21. Web site: Satellite Power System (SPS) State and Local Regulations as Applied to Satellite Power System Microwave Receiving Antenna Facilities. HCP/R-4024-05, October 1978. 92 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208222317/http://www.nss.org/settlement/ssp/library/1978DOESPS-StateAndLocalRegulations.pdf. dead.
  22. Web site: Satellite Power System (SPS) Student Participation. HCP/R-4024-06, October 1978. 97 pages. . 2009-02-20 . 2013-12-08 . https://web.archive.org/web/20131208220426/http://www.nss.org/settlement/ssp/library/1978DOESPS-StudentParticipation.pdf . dead .
  23. Web site: Potential of Laser for SPS Power Transmission. HCP/R-4024-07, October 1978. 112 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208221443/http://www.nss.org/settlement/ssp/library/1978DOESPS-PotentialOfLaserForSPSPowerTransmission.pdf. dead.
  24. Web site: Satellite Power System (SPS) International Agreements. Prepared by Carl Q. Christol. HCP-R-4024-08, October 1978. 283 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208222703/http://www.nss.org/settlement/ssp/library/1978DOESPS-InternationalAgreements(Christol).pdf. dead.
  25. Web site: Satellite Power System (SPS) International Agreements. Prepared by Stephen Grove. HCP/R-4024-12, October 1978. 86 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208220843/http://www.nss.org/settlement/ssp/library/1978DOESPS-InternationalAgreements(Grove).pdf. dead.
  26. Web site: Satellite Power System (SPS) Centralization/Decentralization. HCP/R-4024-09, October 1978. 67 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208220132/http://www.nss.org/settlement/ssp/library/1978DOESPS-CentralizationDecentralization.pdf. dead.
  27. Web site: Satellite Power System (SPS) Mapping of Exclusion Areas For Rectenna Sites. HCP-R-4024-10, October 1978. 117 pages.. 2009-02-20. 2014-02-24. https://web.archive.org/web/20140224074932/http://www.nss.org/settlement/ssp/library/1978DOESPS-MappingOfExclusionAreasForRectennaSites.pdf. dead.
  28. Web site: Economic and Demographic Issues Related to Deployment of the Satellite Power System (SPS). ANL/EES-TM-23, October 1978. 71 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208221703/http://www.nss.org/settlement/ssp/library/1978DOESPS-EconomicAndDemographicIssues.pdf. dead.
  29. Web site: Some Questions and Answers About the Satellite Power System (SPS). DOE/ER-0049/1, January 1980. 47 pages. . 2009-02-20 . 2013-12-08 . https://web.archive.org/web/20131208220102/http://www.nss.org/settlement/ssp/library/1980DOESPS-QuestionsAndAnswersAboutSPS.pdf . dead .
  30. Web site: Satellite Power Systems (SPS) Laser Studies: Meteorological Effects on Laser Beam Propagation and Direct Solar Pumped Lasers for the SPS. NASA Contractor Report 3347, November 1980. 143 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208222651/http://www.nss.org/settlement/ssp/library/1980NASASPS-LaserStudies-MeteorologicalEffects.pdf. dead.
  31. Web site: Satellite Power System (SPS) Public Outreach Experiment. DOE/ER-10041-T11, December 1980. 67 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208222311/http://www.nss.org/settlement/ssp/library/1980DOESPS-PublicOutreachExperiment.pdf. dead.
  32. http://www.nss.org/settlement/ssp/library/1981NASASPS-PowerTransmissionAndReception.pdf "Satellite Power System Concept Development and Evaluation Program: Power Transmission and Reception Technical Summary and Assessment" NASA Reference Publication 1076, July 1981. 281 pages.
  33. Web site: Satellite Power System Concept Development and Evaluation Program: Space Transportation. NASA Technical Memorandum 58238, November 1981. 260 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208215755/http://www.nss.org/settlement/ssp/library/1981NASASPS-SpaceTransportation.pdf. dead.
  34. Web site: Solar Power Satellites. Office of Technology Assessment, August 1981. 297 pages.. 2009-02-20. 2013-12-08. https://web.archive.org/web/20131208220917/http://www.nss.org/settlement/ssp/library/1981-OTA-SolarPowerSatellites.pdf. dead.
  35. Web site: A Fresh Look at Space Solar Power: New Architectures, Concepts, and Technologies. John C. Mankins. International Astronautical Federation IAF-97-R.2.03. 12 pages.. 2009-02-20. 2017-10-26. https://web.archive.org/web/20171026141520/http://www.nss.org/settlement/ssp/library/1997-Mankins-FreshLookAtSpaceSolarPower.pdf. dead.
  36. Web site: Dr. Pete Worden on thespaceshow. thespaceshow.com. 23 March 2009. dead. https://web.archive.org/web/20120707205702/http://www.thespaceshow.com/detail.asp?q=1127. 7 July 2012.
  37. News: China proposes space collaboration with India . https://web.archive.org/web/20130523152006/http://articles.timesofindia.indiatimes.com/2012-11-02/india/34877401_1_space-solar-power-space-collaboration-v-ponraj . dead . 2013-05-23 . . 2012-11-02.
  38. Space Solar Power Satellite Technology Development at the Glenn Research Center—An Overview. James E. Dudenhoefer and Patrick J. George, NASA Glenn Research Center, Cleveland, Ohio.
  39. Web site: How Japan Plans to Build an Orbital Solar Farm. 24 April 2014.
  40. Andrew . Tarantola. Scientists make strides in beaming solar power from space . 12 March 2015 . Engadget . 162 . 3856 . 857–861 . PDF .
  41. Web site: Japan space scientists make wireless energy breakthrough. www.thenews.com.pk.
  42. Web site: MHI Successfully Completes Ground Demonstration Testing of Wireless Power Transmission Technology for SSPS. 12 March 2015. 20 March 2015. 15 March 2015. https://web.archive.org/web/20150315115134/http://www.mhi-global.com/news/story/1503121879.html. dead.
  43. Book: August 1981. Solar Power Satellites. 66. Washington, D.C.. Congress of the U.S., Office of Technology Assessment. 81600129.
  44. Collection at Earth's poles can take place for 24 hours per day, but there are very small loads demanded at the poles.
  45. Web site: Space Solar Power Info: Limitless clean energy from space – NSS . 2024-05-03 . en-US.
  46. Web site: Is Space-Based Solar Power Our Future? (2024) GreenMatch . 2024-05-03 . GreenMatch.co.uk . en-GB.
  47. Web site: Steitz . David . 2024-01-19 . NASA study: clean, space-based solar power beaming is possible . 2024-05-03 . SpaceNews . en-US.
  48. Web site: Space-Based Solar Power overview . esa.int . 2022-08-08 . 2024-04-03.
  49. Shen . G. . Liu . Y. . Sun . G. . Zheng . T. . Zhou . X. . Wang . A. . Suppressing Sidelobe Level of the Planar Antenna Array in Wireless Power Transmission . IEEE Access . 2019 . 7 . 6958–6970 . 10.1109/ACCESS.2018.2890436 . 2169-3536. free . 2019IEEEA...7.6958S .
  50. Wang . Wen-Qin . Retrodirective Frequency Diverse Array Focusing for Wireless Information and Power Transfer . IEEE Journal on Selected Areas in Communications . 2019 . 37 . 1 . 61–73 . 10.1109/JSAC.2018.2872360 . 56594774 . 0733-8716.
  51. Shinohara . Naoki . Beam Control Technologies With a High-Efficiency Phased Array for Microwave Power Transmission in Japan . Proceedings of the IEEE . June 2013 . 101 . 6 . 1448–1463 . 10.1109/JPROC.2013.2253062 . 9091936 . free . 2433/174333 . free .
  52. Fartookzadeh . Mahdi . On the Time-Range Dependency of the Beampatterns Produced by Arbitrary Antenna Arrays: Discussions on the Misplaced Expectations from Frequency Diverse Arrays . 7 March 2019 . physics.class-ph . 1903.03508.
  53. In space, panels suffer rapid erosion from high energy particles,"Solar Panel Degradation" whereas on Earth, commercial panels degrade at a rate around 0.25% a year."Testing a Thirty-Year-Old Photovoltaic Module"
  54. "Some of the most environmentally dangerous activities in space include [...] large structures such as those considered in the late-1970s for building solar power stations in Earth orbit."The Kessler Syndrome (As Discussed by Donald J. Kessler)". Retrieved 2010-05-26.
  55. Web site: Space Solar Power Satellite/Station and the Politics . EMC'09/Kyoto . 2009 . August 7, 2021 . Matsumoto, Hiroshi. https://web.archive.org/web/20190808024723/https://www.ieice.org/proceedings/EMC09/pdf/21Q1-4.pdf. August 8, 2019.
  56. Web site: 2012-10-04 . Elon Musk on SpaceX, Tesla, and More . 2023-06-15 . Popular Mechanics . en-US.
  57. Book: Swan, Philip . 2019 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW) . Wireless Power At-A-Distance Technology – A Strategy for Nurturing Ecosystem Development . 2019 . https://ieeexplore.ieee.org/document/9030683 . Institute of Electrical and Electronics Engineers . IEEE . 99–104 . 10.1109/WoW45936.2019.9030683 . 978-1-5386-7514-4. 212703930 .
  58. Web site: 2024-01-11 . New Study Updates NASA on Space-Based Solar Power - NASA . 2024-05-06 . en-US.
  59. Caton Mr. . Jeffery L. . 2015-01-04 . Space-Based Solar Power: A Technical, Economic, and Operational Assessment . US Army War College.
  60. Book: Dickenson . R.M. . Evaluation of a Microwave High-Power Reception-Conversion Array for Wireless Power Transmission . 1 September 1975 . NASA Jet Propulsion Laboratory . 8–24 . 2 June 2019 . JPL Technical Memorandum 33-741 . Because of the small size of the array relative to the 26-m-diameter antenna tubular beam, only about 11.3% of the klystron transmitter output is incident on the array (see Fig. 12) and is thus available for collection and conversion to DC output..
  61. 10.1109/TMTT.1984.1132833 . The History of Power Transmission by Radio Waves . IEEE Transactions on Microwave Theory and Techniques . 32 . 9 . 1230–1242 . 1984 . Brown . W.C. . 1984ITMTT..32.1230B . 73648082 .
  62. Web site: Wireless Power Transmission 34kw over 1 mile at 82.5% efficiency Goldstone 1975. https://ghostarchive.org/varchive/youtube/20211219/sy1vqRT-vqI . 2021-12-19 . live. 13 March 2008. YouTube.
  63. Web site: Wireless Power Transmission for Solar Power Satellite (SPS) (Second Draft by N. Shinohara), Space Solar Power Workshop, Georgia Institute of Technology.
  64. http://www2.univ-reunion.fr/~lcks/Old_Version/PubIAF97.htm POINT-TO-POINT WIRELESS POWER TRANSPORTATION IN REUNION ISLAND
  65. http://www.nss.org/news/releases/pc20080912.html POINT-TO-POINT WIRELESS POWER TRANSPORTATION IN HAWAII
  66. https://www.wired.com/wiredscience/2008/09/visionary-beams/ Researchers Beam 'Space' Solar Power in Hawaii
  67. Web site: 2010 APS/URSI. July 26, 2009. https://web.archive.org/web/20090726090427/http://www.apsursi2010.org/?m=page&id=47. 2009-07-26.
  68. 10.1109/JPROC.2013.2246851 . Microwave Power Transmission Technologies for Solar Power Satellites . Proceedings of the IEEE . 101 . 6 . 1438 . 2013 . Sasaki . Susumu . Tanaka . Koji . Maki . Ken-Ichiro . 23479022 .
  69. 10.1109/JPROC.2013.2245491 . Array Designs for Long-Distance Wireless Power Transmission: State-of-the-Art and Innovative Solutions . Proceedings of the IEEE . 101 . 6 . 1464 . 2013 . Massa . Andrea . Oliveri . Giacomo . Viani . Federico . Rocca . Paolo . 2990114 .
  70. http://powerweb.grc.nasa.gov/pvsee/programs/pvlaser_overview.html Glenn Involvement with Laser Power Beaming-- Overview
  71. Web site: Space-Based Solar Power . 2024-03-12 . Energy.gov . en.
  72. Web site: Cohen . Ariel . How Space Lasers Could Soon Beam Clean Power Down To Earth . 2024-05-03 . Forbes . en.
  73. Book: Komerath . N.M . Boechler . N. . The Space Power Grid . 57th International Astronautical Federation Congress . Valencia, Spain . IAC-C3.4.06 . October 2006.
  74. Web site: CommSpacTransSec38.html. www.hq.nasa.gov.
  75. Web site: Mankins. John. SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large Phased Array. 24 April 2014. 23 May 2013. https://web.archive.org/web/20130523075630/http://www.nss.org/settlement/ssp/library/SPS_Alpha_2012_Mankins.pdf. dead.
  76. Web site: Second Beamed Space-Power Workshop . Nasa . 1989 . near page 290 . 2011-11-08 . 2012-04-02 . https://web.archive.org/web/20120402184139/http://www.nss.org/settlement/ssp/library/1989-SecondBeamedSpacePowerWorkshop.pdf . dead .
  77. Web site: Options for Lunar Power Beaming . FISO group . Brandhorst . October 27, 2010 . Henry W. Brandhorst, Jr. . January 5, 2012 . December 9, 2013 . https://web.archive.org/web/20131209010800/http://spirit.as.utexas.edu/~fiso/telecon/Brandhorst_10-27-10/Brandhorst_10-27-10.pdf . dead .
  78. Web site: Space-Based Solar Power. energy.gov.
  79. Web site: Solar Power and Energy Storage for Planetary Missions. August 25, 2015.
  80. Web site: Case For Space Based Solar Power Development. August 2003. 2006-03-14.
  81. Web site: 2006_program_update. https://web.archive.org/web/20070110050309/http://www.netl.doe.gov/technologies/coalpower/cctc/ccpi/pubs/2006_program_update.pdf. dead. 2007-01-10.
  82. [Gerard K. O'Neill|O'Neill, Gerard K.]
  83. Web site: Colonizing Space - '70s Style!. https://ghostarchive.org/varchive/youtube/20211219/EgrdAUFFMrA . 2021-12-19 . live. 11 December 2009. YouTube.
  84. Book: Lunar Resources Utilization for Space Construction. 1979. General Dynamics Convair Division. GDC-ASP79-001.
  85. O'Neill . Gerard K. . Gerard K. O'Neill . Brian O'Leary . Driggers . G. . O'Leary . B. . 1980 . New Routes to Manufacturing in Space . Astronautics and Aeronautics . 18 . 46–51 . 1980AsAer..18...46G . Several scenarios for the buildup of industry in space are described. One scenario involves a manufacturing facility, with a crew of three, entirely on the lunar surface. Another scenario involves a fully automated manufacturing facility, remotely supervised from the earth, with provision for occasional visits by repair crews. A third case involves a crewed facility on the Moon for operating a mass-driver launcher to transport lunar materials to a collection point in space and for replicating mass-drivers.
  86. Pearson, Jerome; Eugene Levin, John Oldson and Harry Wykes (2005). Lunar Space Elevators for Cislunar Space Development Phase I Final Technical Report (PDF).
  87. Web site: UH Mobile - Space-Related Centers at UH Target Next 50 Years of Exploration.
  88. Web site: Criswell - Publications and Abstracts. dead. https://web.archive.org/web/20100622063857/http://www.isso.uh.edu/criswell/papers.html. 2010-06-22.
  89. Beaming solar energy from the Moon could solve Earth's energy crisis . David Warmflash . 29 March 2017 . Wired UK . Condé Nast . February 27, 2018 .
  90. Web site: Lunar Solar Cell Manufacturing . www.cam.uh.edu . 12 January 2022 . https://web.archive.org/web/20100622143653/http://www.cam.uh.edu/SpaRC/ISRU%202p%20v1%20022007.pdf . 22 June 2010 . dead.
  91. DAVID R. CRISWEL . LUNAR SOLAR POWER SYSTEM: INDUSTRIAL RESEARCH, DEVELOPMENT, AND DEMONSTRATION . World Energy Council . 18th Congress, Buenos Aires, October 2001 . www.moonbase-italia.org . 12 January 2022 . https://web.archive.org/web/20120326081335/http://www.moonbase-italia.org/PAPERS/D1S2-MB%20Assessment/D2S2-06EnergySupport/D2S2-06EnergySupport.Criswell.pdf . 26 March 2012 . dead.
  92. Web site: The Luna Ring concept. Solar System Exploration Research Virtual Institute.
  93. Web site: Lunar Solar Power Generation, "The LUNA RING", Concept and Technology . Japan-U.S. Science, Technology & Space Applications Program . 2009 . dead . https://web.archive.org/web/20131208175506/http://justsap.org/wp-content/uploads/28_Shigeru-Aoki_Luna_Ring.pdf . 2013-12-08 .
  94. Space Resources, NASA SP-509, Vol 1.
  95. Web site: Retrieval of Asteroidal Materials. 2010-05-31. https://web.archive.org/web/20100531192813/http://settlement.arc.nasa.gov/spaceres/IV-2.html. dead .
  96. Web site: Technologies for Asteroid Capture into Earth Orbit . May 2011 . Stephen D. Covey . 2012-01-29 . 2011-12-12 . https://web.archive.org/web/20111212205647/http://www.nss.org/settlement/asteroids/capture.html . dead.
  97. G.M.. .. Hanley. . Satellite Concept Power Systems (SPS) Definition Study . NASA CR 3317, Sept 1980 .
  98. https://www.osha.gov/SLTC/radiofrequencyradiation/standards.html Radiofrequency and Microwave Radiation Standards
  99. Zhi . Wei-Jia . Wang . Li-Feng . Hu . Xiang-Jun . Recent advances in the effects of microwave radiation on brains . Military Medical Research . 4 . 1 . 2017 . 2054-9369 . 29502514 . 5607572 . 10.1186/s40779-017-0139-0 . free . 29.
  100. Web site: Defense Technical Information Center . apps.dtic.mil . 31 March 2024.
  101. 2081 A Hopeful View of the Human Future, by Gerard K. O'Neill,, P. 182-183
  102. Solar power satellite offshore rectenna study . Final Report Rice Univ . 1980 . 1980ruht.reptT..... .
  103. 2060/19820014867 . J. W. . Freeman . etal . Offshore rectenna feasibility . In NASA, Washington the Final Proc. of the Solar Power Satellite Program Rev. P 348-351 (SEE N82-22676 13-44) . 348 . 1980spsp.nasa..348F. 1980 .
  104. Book: 10.1109/MWSYM.1997.602864 . Automatic beam steered active antenna receiver . 1997 IEEE MTT-S International Microwave Symposium Digest . 2 . 599–602 . 1997 . Gupta . S. . Fusco . V.F. . 978-0-7803-3814-2 . 21796252 .
  105. Web site: Reason . 2024-02-29 . Goodreads . en.
  106. Peter E.. Glaser. Method And Apparatus For Converting Solar Radiation To Electrical Power . United States Patent 3,781,647 . December 25, 1973 .
  107. Web site: Introduction of Research: About the SSPS. JAXA. 25 November 2022.
  108. Web site: Controversy Flares Over Space-Based Solar Power Plans. Space.com. 2 December 2009.
  109. Presentation of relevant technical background with diagrams: http://www.spacefuture.com/archive/conceptual_study_of_a_solar_power_satellite_sps_2000.shtml
  110. Web site: History of research on SPS. dead. https://web.archive.org/web/20121022004245/http://www.esa.int/gsp/ACT/nrg/op/SPS/History.htm. 2012-10-22.
  111. Web site: National Security Space Office Interim Assessment Phase 0 Architecture Feasibility Study, October 10, 2007 . October 20, 2007 . October 25, 2007 . https://web.archive.org/web/20071025092316/http://www.nss.org/settlement/ssp/library/final-sbsp-interim-assessment-release-01.pdf . dead .
  112. Web site: Making the case, again, for space-based solar power. thespacereview.com . November 28, 2011.
  113. http://web.mit.edu/space_solar_power/ Terrestrial Energy Generation Based on Space Solar Power: A Feasible Concept or Fantasy?
  114. Web site: Sky's No Limit: Space-based solar power, the next major step in the Indo-US strategic partnership? Institute for Defence Studies and Analyses. www.idsa.in. 2016-05-21.
  115. Web site: Exploiting earth-moon space: China's ambition after space station. https://web.archive.org/web/20160308013331/http://news.xinhuanet.com/english/2016-03/07/c_135164574.htm. dead. March 8, 2016. 2016-05-21. Xinhua News Agency.
  116. 10.1002/2016EF000399 . Global atmospheric response to emissions from a proposed reusable space launch system . Earth's Future . 5 . 1 . 37–48 . 2017 . Larson . Erik J. L. . Portmann . Robert W. . Rosenlof . Karen H. . Fahey . David W. . Daniel . John S. . Ross . Martin N. . 2017EaFut...5...37L . free .
  117. Web site: 6th Space Solar Power (SSPS) Symposium (Online). 4 December 2020. Energy Orbit .
  118. Web site: The 26th Session of the Asia-Pacific Regional Space Agency Forum (APRSAF-26). 26 November 2019. Satellite to Satellite Wireless Power Transmission System for small Space Solar Power Station .
  119. U.S. Naval Research Laboratory Public Affairs. May 18, 2020. Naval Research Laboratory Conducts First Test of Solar Power Satellite Hardware in Orbit . https://web.archive.org/web/20200519022252/https://www.navy.mil/submit/display.asp?story_id=112989 . May 19, 2020. 19 May 2020. dead. www.navy.mil.
  120. Web site: SPACE POWER BEAMING – Air Force Research Laboratory . 2021-04-28 . dead . 2021-04-28 . https://web.archive.org/web/20210428183529/https://afresearchlab.com/technology/successstories/space-power-beaming/.
  121. Web site: Leonard. David. April 8, 2021 . Space-based solar power getting key test aboard US military's mysterious X-37B space plane. Space.com.
  122. Web site: UK to launch first power station in SPACE – limitless green energy to slash foreign ties. 21 March 2022. 18 April 2022. Space Energy Initiative.
  123. Web site: Foust . Jeff . 2022-08-19 . ESA to request funding for space-based solar power study . 2023-10-29 . SpaceNews . en-US.
  124. 10.1016/j.actaastro.2012.10.022 . Dyson Dots: Changing the solar constant to a variable with photovoltaic lightsails . Acta Astronautica . 82 . 2 . 225–37 . 2013 . Kennedy . Robert G. . Roy . Kenneth I. . Fields . David E. . 2013AcAau..82..225K .
  125. Web site: Lunarsolarpower . 2016-05-23 . 2016-05-26 . https://web.archive.org/web/20160526215248/http://www.lunarsolarpower.org/#!criswell/czxo . dead.
  126. Web site: Beamed Energy In-Space Transportation System for Near Space Colonization . Royce Jones . 2016-05-22 . dead . https://web.archive.org/web/20160610012509/http://www.earthspaceagency.org/images/stories/BeamedEnergyPublish.pdf . 2016-06-10 .
  127. http://www.sspi.gatech.edu/welsom_isdc_reed.pdf Kevin Reed's QGSO proposal (Slide 25)
  128. Web site: Space Future - SPS 2000 - an SPS Demonstrator.
  129. Web site: The Space Power Grid: Synergy Between Space, Energy and Security Policies. Narayanan . Komerath. Georgia Tech. December 4, 2022.
  130. Self Pointing Mirror Satellites for Solar Power from Space . Lewis M. Fraas . SSP Workshop Orlando FL, Dec 2015 . 2016-05-23 . https://web.archive.org/web/20160701131409/http://www.mtu.edu/ece/department/faculty/full-time/zekavat/SSP2015_fraas.pdf . 2016-07-01 . dead.
  131. Web site: Will orbiting flying carpets light the world? . April 6, 2016 . Bob . Silberg . NASA.
  132. Web site: Space-Based Storm Control. 17 April 2009.
  133. Web site: Electromagnetic (EM) Wave Attachment To Laser Plasma Filaments . D. Clint . Friedman . May 2009.
  134. A Waveguide Made of Hot Air. Physics. 26 February 2014. 7. Tzortzakis. Stelios. Couairon. Arnaud. 21. 10.1103/Physics.7.21. 2014PhyOJ...7...21C. free.
  135. Web site: Events - "Long-lived Atmospheric Waveguide in the Wake of Laser Filaments". phys.technion.ac.il . 2017-02-16. https://web.archive.org/web/20170216155921/https://phys.technion.ac.il/index.php/en/events/details/1307-long-lived-atmospheric-waveguide-in-the-wake-of-laser-filaments.
  136. Replicating systems concepts: Self-replicating lunar factory and demonstration. November 1, 1982 . NASA. January 31, 2023.
  137. 10.1089/space.2015.0041 . Lunar-Based Self-Replicating Solar Factory . New Space . 4 . 1 . 53–62 . 2016 . Lewis-Weber . Justin . 2016NewSp...4...53L .
  138. Web site: ARTEMIS Innovation.
  139. Web site: NASA.gov.
  140. Web site: Tethers Unlimited. SpiderFab Additive Manufacturing and Assembly On-Orbit . 2016-05-23 . 2016-05-19 . https://web.archive.org/web/20160519194353/http://www.tethers.com/SpiderFab.html . dead .
  141. Web site: George Sowers . Transportation Architecture for Cislunar Space . United Launch Alliance . 15 December 2015 . 2016-05-23 . 2016-05-07 . https://web.archive.org/web/20160507083909/http://www.ulalaunch.com/uploads/docs/Published_Papers/Commercial_Space/SSP_12_15_sowers.pdf . dead .
  142. Web site: Startram - The Startram Project. Startram.
  143. The Microwave Thermal Thruster and Its Application to the Launch Problem. 10.7907/T337-T709. 2006. Parkin. Kevin L.G.. California Institute of Technology. PhD.
  144. Book: 0765348179. Powersat. Bova. Ben. 2006-10-31. Macmillan .
  145. https://www.youtube.com/watch?v=nEjPLHmFAM8 You Just Wait
  146. https://www.youtube.com/watch?v=NQxfJzl2jkg The Next 100 Years
  147. https://www.youtube.com/watch?v=uxftPmpt7aA CIS-Lunar 1000