The Sobolev conjugate of p for
1\leqp<n
| ||||
p |
>p
W1,p(\Rn)
Lq(\Rn)
\|Du\| | |
Lp(\Rn) |
\|u\| | |
Lq(\Rn) |
\|u\| | |
Lq(\Rn) |
\leq
C(p,q)\|Du\| | |
Lp(\Rn) |
(*)
can not be true for arbitrary q. Consider
u(x)\in
n) | |
C | |
c(\R |
uλ(x):=u(λx)
\begin{align} \|uλ
q | |
\| | |
Lq(\Rn) |
&=
\int | |
\Rn |
|u(λ
| ||||
x)| |
\int | |
\Rn |
|u(y)|qdy=λ-n
q | |
\|u\| | |
Lq(\Rn) |
\\ \|Duλ\|
p | |
Lp(\Rn) |
&=
\int | |
\Rn |
|λDu(λ
| ||||
x)| |
\int | |
\Rn |
|Du(y)|pdy=λp-n\|Du
p \end{align} | |
\| | |
Lp(\Rn) |
The inequality (*) for
uλ
u
\|u\| | |
Lq(\Rn) |
\leq
| ||||||||
λ |
C(p,q)\|Du\| | |
Lp(\Rn) |
If
1- | n | + |
p |
n | |
q |
≠ 0,
λ
q= | pn |
n-p |
which is the Sobolev conjugate.