In algebraic geometry, the smooth completion (or smooth compactification) of a smooth affine algebraic curve X is a complete smooth algebraic curve which contains X as an open subset.[1] Smooth completions exist and are unique over a perfect field.
An affine form of a hyperelliptic curve may be presented as
y2=P(x)
(x,y)\inC2
CP2
CP1
P(x)
This smooth completion can also be obtained as follows. Project the affine curve to the affine line using the x-coordinate. Embed the affine line into the projective line, then take the normalization of the projective line in the function field of the affine curve.
A smooth connected curve over an algebraically closed field is called hyperbolic if
2g-2+r>0
Over an algebraically closed field of characteristic 0, the fundamental group of X is free with
2g+r-1
(Analogue of Dirichlet's unit theorem) Let X be a smooth connected curve over a finite field. Then the units of the ring of regular functions O(X) on X is a finitely generated abelian group of rank r -1.
Suppose the base field is perfect. Any affine curve X is isomorphic to an open subset of an integral projective (hence complete) curve. Taking the normalization (or blowing up the singularities) of the projective curve then gives a smooth completion of X. Their points correspond to the discrete valuations of the function field that are trivial on the base field.
By construction, the smooth completion is a projective curve which contains the given curve as an everywhere dense open subset, and the added new points are smooth. Such a (projective) completion always exists and is unique.
If the base field is not perfect, a smooth completion of a smooth affine curve doesn't always exist. But the above process always produces a regular completion if we start with a regular affine curve (smooth varieties are regular, and the converse is true over perfect fields). A regular completion is unique and, by the valuative criterion of properness, any morphism from the affine curve to a complete algebraic variety extends uniquely to the regular completion.
If X is a separated algebraic variety, a theorem of Nagata[2] says that X can be embedded as an open subset of a complete algebraic variety. If X is moreover smooth and the base field has characteristic 0, then by Hironaka's theorem X can even be embedded as an open subset of a complete smooth algebraic variety, with boundary a normal crossing divisor. If X is quasi-projective, the smooth completion can be chosen to be projective.
However, contrary to the one-dimensional case, there is no uniqueness of the smooth completion, nor is it canonical.