In Riemannian geometry, the smooth coarea formulas relate integrals over the domain of certain mappings with integrals over their codomains.
Let
\scriptstyleM,N
\scriptstylem\geqn
\scriptstyleF:M\longrightarrowN
\scriptstyleF
\scriptstyle\varphi:M\longrightarrow[0,infty)
\intx\in\varphi(x)dM=\inty\in
\int | \varphi(x) | |
x\inF-1(y) |
1 | |
NJ F(x) |
dF-1(y)dN
\intx\in\varphi(x)NJ F(x)dM=\inty\in
\int | |
x\inF-1(y) |
\varphi(x)dF-1(y)dN
where
\scriptstyleNJ F(x)
\scriptstyleF
Note that from Sard's lemma almost every point
\scriptstyley\inN
\scriptstyleF
\scriptstyleF-1(y)
\scriptstyleM