Slowsort Explained

Slowsort is a sorting algorithm. It is of humorous nature and not useful. It is a reluctant algorithm based on the principle of multiply and surrender (a parody formed by taking the opposites of divide and conquer). It was published in 1984 by Andrei Broder and Jorge Stolfi in their paper "Pessimal Algorithms and Simplexity Analysis"[1] (a parody of optimal algorithms and complexity analysis).

Algorithm

Slowsort is a recursive algorithm.

This is an implementation in pseudocode:procedure slowsort(A[], start_idx, end_idx) // Sort array range A[start ... end] in-place. if start_idx ≥ end_idx then return

middle_idx := floor((start_idx + end_idx)/2) slowsort(A, start_idx, middle_idx) // (1.1) slowsort(A, middle_idx + 1, end_idx) // (1.2) if A[end_idx] < A[middle_idx] then swap (A, end_idx, middle_idx) // (1.3)

slowsort(A, start_idx, end_idx - 1) // (2)

An unoptimized implementation in Haskell (purely functional) may look as follows:slowsort :: (Ord a) => [a] -> [a]slowsort xs | length xs <= 1 = xs | otherwise = slowsort xs' ++ [max llast rlast] -- (2) where m = length xs `div` 2 l = slowsort $ take m xs -- (1.1) r = slowsort $ drop m xs -- (1.2) llast = last l rlast = last r xs' = init l ++ min llast rlast : init r

Complexity

The runtime

T(n)

for Slowsort is

T(n)=2T(n/2)+T(n-1)+1

.

A lower asymptotic bound for

T(n)

in Landau notation is
log2(n)/(2+\epsilon)
\Omega\left(n

\right)

for any

\epsilon>0

.

Slowsort is therefore not in polynomial time. Even the best case is worse than Bubble sort.

Notes and References

  1. Pessimal Algorithms and Simplexity Analysis . 1984 . Andrei Broder . Jorge Stolfi . ACM SIGACT News . 16 . 3 . 49–53 . 10.1145/990534.990536 . 10.1.1.116.9158. 6566140 .