In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a matrix transformation of a convergent sequence which preserves the limit.[1]
(ai,j)i,j
\begin{align} &\limiai,j=0 j\inN&&(Everycolumnsequenceconvergesto0.)\\[3pt] &\limi
infty | |
\sum | |
j=0 |
ai,j=1&&(Therowsumsconvergeto1.)\\[3pt] &\supi
infty | |
\sum | |
j=0 |
\vertai,j\vert<infty&&(Theabsoluterowsumsarebounded.) \end{align}
An example is Cesaro summation, a matrix summability method with
amn=\begin{cases}
1 | |
m |
&n\lem\ 0&n>m\end{cases}=\begin{pmatrix} 1&0&0&0&0& … \\
1 | |
2 |
&
1 | |
2 |
&0&0&0& … \\
1 | |
3 |
&
1 | |
3 |
&
1 | |
3 |
&0&0& … \\
1 | |
4 |
&
1 | |
4 |
&
1 | |
4 |
&
1 | |
4 |
&0& … \\
1 | |
5 |
&
1 | |
5 |
&
1 | |
5 |
&
1 | |
5 |
&
1 | |
5 |
& … \\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots\\ \end{pmatrix},