In set theory, Silver machines are devices used for bypassing the use of fine structure in proofs of statements holding in L. They were invented by set theorist Jack Silver as a means of proving global square holds in the constructible universe.
\alpha
\phi(\mu0,\mu1,\ldots,\mun)
\beta1,\ldots,\betan,\gamma\inX
\alpha
\models | |
L\gamma |
\circ, | |
\phi(\alpha | |
1 |
\ldots,
\circ | |
\beta | |
n) |
\alpha
\alpha\circ
\alpha
L\gamma
A structure
\langleX,<,(hi)i<\omega\rangle
X\subseteqOn
\foralli,hi
Xk(i)
If
N=\langleX,<,(hi)i<\omega\rangle
Nλ
X\capλ
Let
N1,N2
N1\triangleleftN2
\foralli\in\omega
\forallx1,\ldots,xk(i)\inX1
1(x | |
h | |
1, |
\ldots,xk(i))\cong
2(x | |
h | |
1, |
\ldots,xk(i))
A Silver machine is an eligible structure of the form
M=\langleOn,<,(hi)i<\omega\rangle
Condensation principle. If
N\triangleleftMλ
\alpha
N\congM\alpha
Finiteness principle. For each
λ
H\subseteqλ
A\subseteqλ+1
Mλ+1[A]\subseteqMλ[(A\capλ)\cupH]\cup\{λ\}
Skolem property. If
\alpha
X\subseteqOn
\alpha\inM[X]
λ<[sup(X)\cup\alpha]+
\Sigma1
X\cup\{\alpha\}
\alpha\inMλ[X]