Signal averaging is a signal processing technique applied in the time domain, intended to increase the strength of a signal relative to noise that is obscuring it. By averaging a set of replicate measurements, the signal-to-noise ratio (SNR) will be increased, ideally in proportion to the square root of the number of measurements.
Assumed that
s(t)
z(t)
E[z(t)z(t-\tau)]=0=E[z(t)s(t-\tau)]\forallt,\tau
Psignal=E[s2]
E[z]=0=\mu
0<E[\left(z-\mu\right)2]=E[z2]=Pnoise=\sigma2
SNR=
Psignal | |
Pnoise |
=
E[s2] | |
\sigma2 |
Assuming we sample the noise, we get a per-sample variance of
Var(z)=E[z2]=\sigma2
Averaging a random variable leads to the following variance:
Var\left( | 1n |
\sum |
n | |
i=1 |
zi\right)=
1{n | |
2} |
n | |
Var\left(\sum | |
i=1 |
zi\right)=
1{n | |
2} |
nVar\left( | |
\sum | |
i=1 |
zi\right)
Since noise variance is constant
\sigma2
Var(Navg)=Var\left(
1n | |
\sum |
n | |
i=1 |
zi\right)=
1{n | |
2} |
n\sigma2=
1n | |
\sigma |
2
demonstrating that averaging
n
n
\sqrt{n}
Considering
n
Vi,i\in\{1,\ldots,n\}
T
Vi=\left[si,1,\ldots,si,T\right], si,k\inKT
the power
Pi
Pi=
T | |
\sum | |
k=1 |
2} | |
{s | |
i,k |
=\left|Vi\right|2
Again, averaging the
n
Vi,i=1,\ldots,n
Vavg=
1n | |
\sum |
n | |
i=1 |
si,k=
1n | |
\sum |
n | |
i=1 |
T | |
\sum | |
k=1 |
si,k
In the case where
Vn\equivVm\forallm,n\in\{1,\ldots,n\}
Vavg
Vavg,identicalsignals=Pi
In this case, the ratio of signal to noise also reaches a maximum,
SNRavg,identicalsignals=
Vavg,identicalsignals | |
Navg |
=nSNR
This is the oversampling case, where the observed signal is correlated (because oversampling implies that the signal observations are strongly correlated).
Averaging is applied to enhance a time-locked signal component in noisy measurements; time-locking implies that the signal is observation-periodic, so we end up in the maximum case above.
A specific way of obtaining replicates is to average all the odd and even trials in separate buffers. This has the advantage of allowing for comparison of even and odd results from interleaved trials. An average of odd and even averages generates the completed averaged result, while the difference between the odd and even averages, divided by two, constitutes an estimate of the noise.
The following is a MATLAB simulation of the averaging process:
even_avg = even/(ii/2); % even buffer average odd_avg = odd/(ii/2); % odd buffer averageact_avg = actual_noise/ii; % actual noise level
db(rms(act_avg))db(rms((even_avg-odd_avg)/2))plot((odd_avg+even_avg)); hold on; plot((even_avg-odd_avg)/2)
The averaging process above, and in general, results in an estimate of the signal. When compared with the raw trace, the averaged noise component is reduced with every averaged trial. When averaging real signals, the underlying component may not always be as clear, resulting in repeated averages in a search for consistent components in two or three replicates. It is unlikely that two or more consistent results will be produced by chance alone.
Signal averaging typically relies heavily on the assumption that the noise component of a signal is random, having zero mean, and being unrelated to the signal. However, there are instances in which the noise is not uncorrelated. A common example of correlated noise is quantization noise (e.g. the noise created when converting from an analog to a digital signal).