Siegel's lemma explained

In mathematics, specifically in transcendental number theory and Diophantine approximation, Siegel's lemma refers to bounds on the solutions of linear equations obtained by the construction of auxiliary functions. The existence of these polynomials was proven by Axel Thue;[1] Thue's proof used Dirichlet's box principle. Carl Ludwig Siegel published his lemma in 1929.[2] It is a pure existence theorem for a system of linear equations.

Siegel's lemma has been refined in recent years to produce sharper bounds on the estimates given by the lemma.[3]

Statement

Suppose we are given a system of M linear equations in N unknowns such that N > M, say

a11X1+ … +a1NXN=0

aM1X1+ … +aMNXN=0

where the coefficients are rational integers, not all 0, and bounded by B. The system then has a solution

(X1,X2,...,XN)

with the Xs all rational integers, not all 0, and bounded by

(NB)M/(N-M).

[4]

gave the following sharper bound for the Xs:

max|Xj|\le\left(D-1\sqrt{\det(AAT)}\right)1/(N-M)

where D is the greatest common divisor of the M × M minors of the matrix A, and AT is its transpose. Their proof involved replacing the pigeonhole principle by techniques from the geometry of numbers.

See also

References

Notes and References

  1. Thue. Axel. Axel Thue. Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math.. 1909. 1909. 135. 284–305. 10.1515/crll.1909.135.284. 125903243.
  2. Siegel. Carl Ludwig. Carl Ludwig Siegel. Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys. Math. Kl.. 1929. 41–69., reprinted in Gesammelte Abhandlungen, volume 1; the lemma is stated on page 213
  3. Bombieri. E.. Enrico Bombieri. Mueller, J. . On effective measures of irrationality for

    {\scriptscriptstyle\sqrt[r]{a/b}}

    and related numbers. Journal für die reine und angewandte Mathematik. 342. 1983. 173–196.
  4. Lemma D.4.1, page 316.