PTPN11 explained
Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in humans is encoded by the PTPN11 gene. PTPN11 is a protein tyrosine phosphatase (PTP) Shp2.[1] [2]
PTPN11 is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains two tandem Src homology-2 domains, which function as phospho-tyrosine binding domains and mediate the interaction of this PTP with its substrates. This PTP is widely expressed in most tissues and plays a regulatory role in various cell signaling events that are important for a diversity of cell functions, such as mitogenic activation, metabolic control, transcription regulation, and cell migration. Mutations in this gene are a cause of Noonan syndrome as well as acute myeloid leukemia.[3]
Structure and function
This phosphatase, along with its paralogue, Shp1, possesses a domain structure that consists of two tandem SH2 domains in its N-terminus followed by a protein tyrosine phosphatase (PTP) domain. In the inactive state, the N-terminal SH2 domain binds the PTP domain and blocks access of potential substrates to the active site. Thus, Shp2 is auto-inhibited.
Upon binding to target phospho-tyrosyl residues, the N-terminal SH2 domain is released from the PTP domain, catalytically activating the enzyme by relieving this auto-inhibition.
Genetic diseases associated with PTPN11
Missense mutations in the PTPN11 locus are associated with both Noonan syndrome and Leopard syndrome. At least 79 disease-causing mutations in this gene have been discovered.[4]
It has also been associated with metachondromatosis.[5]
Noonan syndrome
In the case of Noonan syndrome, mutations are broadly distributed throughout the coding region of the gene but all appear to result in hyper-activated, or unregulated mutant forms of the protein. Most of these mutations disrupt the binding interface between the N-SH2 domain and catalytic core necessary for the enzyme to maintain its auto-inhibited conformation.[6]
Leopard syndrome
The mutations that cause Leopard syndrome are restricted regions affecting the catalytic core of the enzyme producing catalytically impaired Shp2 variants.[7] It is currently unclear how mutations that give rise to mutant variants of Shp2 with biochemically opposite characteristics result in similar human genetic syndromes.
Cancer associated with PTPN11
Patients with a subset of Noonan syndrome PTPN11 mutations also have a higher prevalence of juvenile myelomonocytic leukemias (JMML). Activating Shp2 mutations have also been detected in neuroblastoma, melanoma, acute myeloid leukemia, breast cancer, lung cancer, colorectal cancer.[8] Recently, a relatively high prevalence of PTPN11 mutations (24%) were detected by next-generation sequencing in a cohort of NPM1-mutated acute myeloid leukemia patients,[9] although the prognostic significance of such associations has not been clarified. These data suggests that Shp2 may be a proto-oncogene. However, it has been reported that PTPN11/Shp2 can act as either tumor promoter or suppressor. In aged mouse model, hepatocyte-specific deletion of PTPN11/Shp2 promotes inflammatory signaling through the STAT3 pathway and hepatic inflammation/necrosis, resulting in regenerative hyperplasia and spontaneous development of tumors. Decreased PTPN11/Shp2 expression was detected in a subfraction of human hepatocellular carcinoma (HCC) specimens.[10] The bacterium Helicobacter pylori has been associated with gastric cancer, and this is thought to be mediated in part by the interaction of its virulence factor CagA with SHP2.[11]
Interactions
PTPN11 has been shown to interact with
- CagA,[11]
- Cbl gene,[12]
- CD117,[13] [14]
- CD31,[15] [16] [17] [18]
- CEACAM1,[19]
- Epidermal growth factor receptor,[20] [21]
- Erk[22] [23]
- FRS2,[24] [25] [26]
- GAB1,[27] [28]
- GAB2,[29] [30] [31]
- GAB3,[32]
- Glycoprotein 130,[33] [34]
- Grb2,[26] [35] [36] [37] [38] [39] [40] [41]
- Growth hormone receptor,[42] [43]
- HoxA10,[44]
- Insulin receptor,[45] [46]
- Insulin-like growth factor 1 receptor,[47] [48]
- IRS1,[49] [50]
- Janus kinase 1,[51]
- Janus kinase 2,[52] [53] [54]
- LAIR1,[55] [56]
- LRP1,[57]
- PDGFRB,[58] [59]
- PI3K → Akt[22]
- PLCG2,[60]
- PTK2B,[61]
- Ras[22] [23]
- SLAMF1,[62] [63]
- SOCS3,[51]
- SOS1,[26] [64]
- STAT3,[10]
- STAT5A,[65] [66] and
- STAT5B.[65]
H Pylori CagA virulence factor
CagA is a protein and virulence factor inserted by Helicobacter pylori into gastric epithelia. Once activated by SRC phosphorylation, CagA binds to SHP2, allosterically activating it. This leads to morphological changes, abnormal mitogenic signals and sustained activity can result in apoptosis of the host cell. Epidemiological studies have shown roles of cagA- positive H. pylori in the development of atrophic gastritis, peptic ulcer disease and gastric carcinoma.[67]
Further reading
- Book: Marron MB, Hughes DP, McCarthy MJ, Beaumont ER, Brindle NP . Tie-1 Receptor Tyrosine Kinase Endodomain Interaction with SHP2: Potential Signalling Mechanisms and Roles in Angiogenesis . Angiogenesis . 476 . 35–46 . 2000 . 10949653 . 10.1007/978-1-4615-4221-6_3 . Advances in Experimental Medicine and Biology . 978-1-4613-6895-3 .
- Carter-Su C, Rui L, Stofega MR . SH2-B and SIRP: JAK2 binding proteins that modulate the actions of growth hormone. . Recent Prog. Horm. Res. . 55 . 293–311 . 2000 . 11036942 .
- Ion A, Tartaglia M, Song X, Kalidas K, van der Burgt I, Shaw AC, Ming JE, Zampino G, Zackai EH, Dean JC, Somer M, Parenti G, Crosby AH, Patton MA, Gelb BD, Jeffery S . Absence of PTPN11 mutations in 28 cases of cardiofaciocutaneous (CFC) syndrome . Hum. Genet. . 111 . 4–5 . 421–7 . 2002 . 12384786 . 10.1007/s00439-002-0803-6 . 27085702 .
- Hugues L, Cavé H, Philippe N, Pereira S, Fenaux P, Preudhomme C . Mutations of PTPN11 are rare in adult myeloid malignancies. . Haematologica . 90 . 6 . 853–4 . 2006 . 15951301 .
- Tartaglia M, Gelb BD . Germ-line and somatic PTPN11 mutations in human disease. . European Journal of Medical Genetics . 48 . 2 . 81–96 . 2005 . 16053901 . 10.1016/j.ejmg.2005.03.001 .
- Ogata T, Yoshida R . PTPN11 mutations and genotype-phenotype correlations in Noonan and LEOPARD syndromes. . Pediatric Endocrinology Reviews . 2 . 4 . 669–74 . 2006 . 16208280 .
- Feng GS . Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. . Cell Res. . 17 . 1 . 37–41 . 2007 . 17211446 . 10.1038/sj.cr.7310140 . free .
- Edouard T, Montagner A, Dance M, Conte F, Yart A, Parfait B, Tauber M, Salles JP, Raynal P . How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms? . Cell. Mol. Life Sci. . 64 . 13 . 1585–90 . 2007 . 17453145 . 10.1007/s00018-007-6509-0 . 25934330 . 11136329 .
External links
Notes and References
- Jamieson CR, van der Burgt I, Brady AF, van Reen M, Elsawi MM, Hol F, Jeffery S, Patton MA, Mariman E . Mapping a gene for Noonan syndrome to the long arm of chromosome 12 . Nat. Genet. . 8 . 4 . 357–60 . December 1994 . 7894486 . 10.1038/ng1294-357 . 1582162 .
- Freeman RM, Plutzky J, Neel BG . Identification of a human Src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew . Proc. Natl. Acad. Sci. U.S.A. . 89 . 23 . 11239–43 . December 1992 . 1280823 . 50525 . 10.1073/pnas.89.23.11239 . 1992PNAS...8911239F . free .
- Web site: Entrez Gene: PTPN11 protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1).
- Šimčíková D, Heneberg P . Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases . Scientific Reports . 9 . 1 . 18577 . December 2019 . 31819097 . 6901466 . 10.1038/s41598-019-54976-4. 2019NatSR...918577S .
- Sobreira NL, Cirulli ET, Avramopoulos D, Wohler E, Oswald GL, Stevens EL, Ge D, Shianna KV, Smith JP, Maia JM, Gumbs CE, Pevsner J, Thomas G, Valle D, Hoover-Fong JE, Goldstein DB . Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene . PLOS Genet. . 6 . 6 . e1000991 . June 2010 . 20577567 . 2887469 . 10.1371/journal.pgen.1000991 . free .
- Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS . Germline gain-of-function mutations in SOS1 cause Noonan syndrome . Nat. Genet. . 39 . 1 . 70–4 . January 2007 . 17143285 . 10.1038/ng1926 . 10222262 .
- Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG . PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects . J. Biol. Chem. . 281 . 10 . 6785–92 . March 2006 . 16377799 . 10.1074/jbc.M513068200 . free .
- Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG . Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia . Cancer Res. . 64 . 24 . 8816–20 . December 2004 . 15604238 . 10.1158/0008-5472.CAN-04-1923 . free .
- Patel SS, Kuo FC, Gibson CJ, Steensma DP, Soiffer RJ, Alyea EP, Chen YA, Fathi AT, Graubert TA, Brunner AM, Wadleigh M, Stone RM, DeAngelo DJ, Nardi V, Hasserjian RP, Weinberg OK . High NPM1 mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML . Blood . 131 . 25 . 2816–2825 . May 2018 . 29724895 . 6265642 . 10.1182/blood-2018-01-828467 .
- Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, Varki NM, Wang H, Feng GS . Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis . Cancer Cell . 19 . 5 . 629–39 . May 2011 . 21575863 . 3098128 . 10.1016/j.ccr.2011.03.023 .
- Hatakeyama M, Higashi H . Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis . Cancer Science . 96 . 12 . 835–843 . 2005 . 16367902 . 10.1111/j.1349-7006.2005.00130.x . 5721063 . free . 11159386 .
- Tanaka Y, Tanaka N, Saeki Y, Tanaka K, Murakami M, Hirano T, Ishii N, Sugamura K . c-Cbl-dependent monoubiquitination and lysosomal degradation of gp130 . Mol. Cell. Biol. . 28 . 15 . 4805–18 . Aug 2008 . 18519587 . 2493370 . 10.1128/MCB.01784-07 .
- Tauchi T, Feng GS, Marshall MS, Shen R, Mantel C, Pawson T, Broxmeyer HE . The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells . J. Biol. Chem. . 269 . 40 . 25206–11 . October 1994 . 10.1016/S0021-9258(17)31518-1 . 7523381 . free .
- Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA . SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain . Mol. Cell. Biol. . 18 . 4 . 2089–99 . April 1998 . 9528781 . 121439 . 10.1128/MCB.18.4.2089.
- Ilan N, Cheung L, Pinter E, Madri JA . Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation . J. Biol. Chem. . 275 . 28 . 21435–43 . July 2000 . 10801826 . 10.1074/jbc.M001857200 . free .
- Pumphrey NJ, Taylor V, Freeman S, Douglas MR, Bradfield PF, Young SP, Lord JM, Wakelam MJ, Bird IN, Salmon M, Buckley CD . Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31 . FEBS Lett. . 450 . 1–2 . 77–83 . April 1999 . 10350061 . 10.1016/S0014-5793(99)00446-9 . 31471121 . free .
- Hua CT, Gamble JR, Vadas MA, Jackson DE . Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates . J. Biol. Chem. . 273 . 43 . 28332–40 . October 1998 . 9774457 . 10.1074/jbc.273.43.28332 . free.
- Jackson DE, Ward CM, Wang R, Newman PJ . The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling . J. Biol. Chem. . 272 . 11 . 6986–93 . March 1997 . 9054388 . 10.1074/jbc.272.11.6986 . free .
- Huber M, Izzi L, Grondin P, Houde C, Kunath T, Veillette A, Beauchemin N . The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells . J. Biol. Chem. . 274 . 1 . 335–44 . Jan 1999 . 9867848 . 10.1074/jbc.274.1.335 . free.
- Schulze WX, Deng L, Mann M . Phosphotyrosine interactome of the ErbB-receptor kinase family . Mol. Syst. Biol. . 1 . 1 . E1–E13 . 2005 . 16729043 . 1681463 . 10.1038/msb4100012 .
- Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer FD . Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C . J. Biol. Chem. . 270 . 36 . 21277–84 . Sep 1995 . 7673163 . 10.1074/jbc.270.36.21277 . free.
- Book: Protein phosphatases. 2004. Springer. 978-3-540-20560-9. 275–299. https://books.google.com/books?id=EotzHJrTu3sC&q=The+Shp-2+tyrosine+phosphatase. L.A. Lai . C. Zhao . E.E. Zhang . G.S. Feng . Joaquín Ariño . Denis Alexander . 14 The Shp-2 tyrosine phosphatase.
- Neel BG, Gu H, Pao L . The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling . Trends in Biochemical Sciences . 28 . 6 . 284–293 . June 2003 . 12826400 . 10.1016/S0968-0004(03)00091-4 . 0968-0004 .
- Delahaye L, Rocchi S, Van Obberghen E . Potential involvement of FRS2 in insulin signaling . . 141 . 2 . 621–8 . Feb 2000 . 10650943 . 10.1210/endo.141.2.7298 . free .
- Kurokawa K, Iwashita T, Murakami H, Hayashi H, Kawai K, Takahashi M . Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction . Oncogene . 20 . 16 . 1929–38 . Apr 2001 . 11360177 . 10.1038/sj.onc.1204290 . 25346661 .
- Hadari YR, Kouhara H, Lax I, Schlessinger J . Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation . Mol. Cell. Biol. . 18 . 7 . 3966–73 . Jul 1998 . 9632781 . 108981 . 10.1128/MCB.18.7.3966 .
- Saito Y, Hojo Y, Tanimoto T, Abe J, Berk BC . Protein kinase C-alpha and protein kinase C-epsilon are required for Grb2-associated binder-1 tyrosine phosphorylation in response to platelet-derived growth factor . J. Biol. Chem. . 277 . 26 . 23216–22 . Jun 2002 . 11940581 . 10.1074/jbc.M200605200 . free .
- Rocchi S, Tartare-Deckert S, Murdaca J, Holgado-Madruga M, Wong AJ, Van Obberghen E . Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules . Mol. Endocrinol. . 12 . 7 . 914–23 . Jul 1998 . 9658397 . 10.1210/mend.12.7.0141 . free .
- Lynch DK, Daly RJ . PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2 . EMBO J. . 21 . 1–2 . 72–82 . January 2002 . 11782427 . 125816 . 10.1093/emboj/21.1.72 .
- Zhao C, Yu DH, Shen R, Feng GS . Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1 . J. Biol. Chem. . 274 . 28 . 19649–54 . July 1999 . 10391903 . 10.1074/jbc.274.28.19649 . free .
- Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J . A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners . FEBS Lett. . 495 . 3 . 148–53 . April 2001 . 11334882 . 10.1016/S0014-5793(01)02373-0 . 24499468 .
- Wolf. I.. Jenkins. B. J.. Liu. Y.. Seiffert. M.. Custodio. J. M.. Young. P.. Rohrschneider. L. R.. Gab3, a New DOS/Gab Family Member, Facilitates Macrophage Differentiation. Molecular and Cellular Biology. 22. 1. 2002. 231–244. 0270-7306. 10.1128/MCB.22.1.231-244.2002. 11739737. 134230. and associates transiently with the SH2 domain-containing proteins p85 and SHP2. free.
- Anhuf D, Weissenbach M, Schmitz J, Sobota R, Hermanns HM, Radtke S, Linnemann S, Behrmann I, Heinrich PC, Schaper F . Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation . Journal of Immunology . 165 . 5 . 2535–43 . Sep 2000 . 10946280 . 10.4049/jimmunol.165.5.2535 . free .
- Kim H, Baumann H . Transmembrane domain of gp130 contributes to intracellular signal transduction in hepatic cells . J. Biol. Chem. . 272 . 49 . 30741–7 . Dec 1997 . 9388212 . 10.1074/jbc.272.49.30741 . free .
- Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE . Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk . J. Biol. Chem. . 275 . 23 . 17263–8 . Jun 2000 . 10747947 . 10.1074/jbc.M000689200 . free .
- Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG . Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras . . 91 . 15 . 7335–9 . Jul 1994 . 8041791 . 44394 . 10.1073/pnas.91.15.7335 . 1994PNAS...91.7335B . free .
- Ward AC, Monkhouse JL, Hamilton JA, Csar XF . Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor . Biochim. Biophys. Acta . 1448 . 1 . 70–6 . Nov 1998 . 9824671 . 10.1016/S0167-4889(98)00120-7 . free . 10536/DRO/DU:30096477 . free .
- Tang J, Feng GS, Li W . Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor . Oncogene . 15 . 15 . 1823–32 . Oct 1997 . 9362449 . 10.1038/sj.onc.1201351 . free .
- Tang H, Zhao ZJ, Huang XY, Landon EJ, Inagami T . Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells . J. Biol. Chem. . 274 . 18 . 12401–7 . Apr 1999 . 10212213 . 10.1074/jbc.274.18.12401 . free.
- Zhang S, Mantel C, Broxmeyer HE . Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells . J. Leukoc. Biol. . 65 . 3 . 372–80 . Mar 1999 . 10080542 . 10.1002/jlb.65.3.372 . 38211235 . free .
- Wong L, Johnson GR . Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2 . J. Biol. Chem. . 271 . 35 . 20981–4 . Aug 1996 . 8702859 . 10.1074/jbc.271.35.20981 . free .
- Stofega MR, Herrington J, Billestrup N, Carter-Su C . Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B . Mol. Endocrinol. . 14 . 9 . 1338–50 . September 2000 . 10976913 . 10.1210/mend.14.9.0513 . free .
- Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J . Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins . J. Biol. Chem. . 273 . 26 . 15906–12 . June 1998 . 9632636 . 10.1074/jbc.273.26.15906 . free .
- Wang H, Lindsey S, Konieczna I, Bei L, Horvath E, Huang W, Saberwal G, Eklund EA . Constitutively active SHP2 cooperates with HoxA10 overexpression to induce acute myeloid leukemia. . J Biol Chem . 284 . 4 . 2549–67 . Jan 2009 . 19022774 . 2629090 . 10.1074/jbc.M804704200 . free .
- Maegawa H, Ugi S, Adachi M, Hinoda Y, Kikkawa R, Yachi A, Shigeta Y, Kashiwagi A . Insulin receptor kinase phosphorylates protein tyrosine phosphatase containing Src homology 2 regions and modulates its PTPase activity in vitro . Biochem. Biophys. Res. Commun. . 199 . 2 . 780–5 . Mar 1994 . 8135823 . 10.1006/bbrc.1994.1297 .
- Kharitonenkov A, Schnekenburger J, Chen Z, Knyazev P, Ali S, Zwick E, White M, Ullrich A . Adapter function of protein-tyrosine phosphatase 1D in insulin receptor/insulin receptor substrate-1 interaction . J. Biol. Chem. . 270 . 49 . 29189–93 . Dec 1995 . 7493946 . 10.1074/jbc.270.49.29189 . free .
- Mañes S, Mira E, Gómez-Mouton C, Zhao ZJ, Lacalle RA, Martínez-A C . Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility . Mol. Cell. Biol. . 19 . 4 . 3125–35 . Apr 1999 . 10082579 . 84106 . 10.1128/mcb.19.4.3125.
- Seely BL, Reichart DR, Staubs PA, Jhun BH, Hsu D, Maegawa H, Milarski KL, Saltiel AR, Olefsky JM . Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein . J. Biol. Chem. . 270 . 32 . 19151–7 . Aug 1995 . 7642582 . 10.1074/jbc.270.32.19151 . free.
- Kuhné MR, Pawson T, Lienhard GE, Feng GS . The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp . J. Biol. Chem. . 268 . 16 . 11479–81 . Jun 1993 . 10.1016/S0021-9258(19)50220-4 . 8505282 . free .
- Myers MG, Mendez R, Shi P, Pierce JH, Rhoads R, White MF . The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling . J. Biol. Chem. . 273 . 41 . 26908–14 . Oct 1998 . 9756938 . 10.1074/jbc.273.41.26908 . free .
- Lehmann U, Schmitz J, Weissenbach M, Sobota RM, Hortner M, Friederichs K, Behrmann I, Tsiaris W, Sasaki A, Schneider-Mergener J, Yoshimura A, Neel BG, Heinrich PC, Schaper F . SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130 . J. Biol. Chem. . 278 . 1 . 661–71 . January 2003 . 12403768 . 10.1074/jbc.M210552200 . free .
- Yin T, Shen R, Feng GS, Yang YC . Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases . J. Biol. Chem. . 272 . 2 . 1032–7 . January 1997 . 8995399 . 10.1074/jbc.272.2.1032 . free .
- Tauchi T, Damen JE, Toyama K, Feng GS, Broxmeyer HE, Krystal G . Tyrosine 425 within the activated erythropoietin receptor binds Syp, reduces the erythropoietin required for Syp tyrosine phosphorylation, and promotes mitogenesis . Blood . 87 . 11 . 4495–501 . June 1996 . 8639815 . 10.1182/blood.V87.11.4495.bloodjournal87114495. free .
- Maegawa H, Kashiwagi A, Fujita T, Ugi S, Hasegawa M, Obata T, Nishio Y, Kojima H, Hidaka H, Kikkawa R . SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates . Biochem. Biophys. Res. Commun. . 228 . 1 . 122–7 . November 1996 . 8912646 . 10.1006/bbrc.1996.1626 .
- Fournier N, Chalus L, Durand I, Garcia E, Pin JJ, Churakova T, Patel S, Zlot C, Gorman D, Zurawski S, Abrams J, Bates EE, Garrone P . FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells . Journal of Immunology . 165 . 3 . 1197–209 . Aug 2000 . 10903717 . 10.4049/jimmunol.165.3.1197 . free .
- Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH . Grant Robert Sutherland . LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes . Immunity . 7 . 2 . 283–90 . Aug 1997 . 9285412 . 10.1016/S1074-7613(00)80530-0 . free . 2066/26173 . free .
- Betts GN, van der Geer P, Komives EA . Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain . J. Biol. Chem. . 283 . 23 . 15656–64 . June 2008 . 18381291 . 2414285 . 10.1074/jbc.M709514200 . free .
- Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Günther B, Müller T, Birchmeier C, Böhmer FD . Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1 . J. Cell Biol. . 152 . 2 . 325–34 . Jan 2001 . 11266449 . 2199605 . 10.1083/jcb.152.2.325 .
- Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE, Walsh CT, Neel BG . Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor . J. Biol. Chem. . 268 . 29 . 21478–81 . Oct 1993 . 10.1016/S0021-9258(20)80562-6 . 7691811 . free .
- Boudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, Haye B, Billat C . Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells . Cell. Signal. . 14 . 10 . 869–78 . October 2002 . 12135708 . 10.1016/S0898-6568(02)00036-0 .
- Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE, Shima Y, Tai YT, Rosen S, Avraham S, Kharbanda S, Anderson KC . SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells . J. Biol. Chem. . 275 . 36 . 27845–50 . September 2000 . 10880513 . 10.1074/jbc.M003428200 . free .
- Howie D, Simarro M, Sayos J, Guirado M, Sancho J, Terhorst C . Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation . Blood . 99 . 3 . 957–65 . Feb 2000 . 11806999 . 10.1182/blood.V99.3.957 . free .
- Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, Gullo C, Howie D, Rietdijk S, Thompson A, Coyle AJ, Denny C, Yaffe MB, Engel P, Eck MJ, Terhorst C . Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells . EMBO J. . 20 . 21 . 5840–52 . Nov 2001 . 11689425 . 125701 . 10.1093/emboj/20.21.5840 .
- Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, Miura O . Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells . Biochem. Biophys. Res. Commun. . 239 . 2 . 412–7 . Oct 1997 . 9344843 . 10.1006/bbrc.1997.7480 .
- Yu CL, Jin YJ, Burakoff SJ . Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation . J. Biol. Chem. . 275 . 1 . 599–604 . Jan 2000 . 10617656 . 10.1074/jbc.275.1.599 . free .
- Chughtai N, Schimchowitsch S, Lebrun JJ, Ali S . Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells . J. Biol. Chem. . 277 . 34 . 31107–14 . Aug 2002 . 12060651 . 10.1074/jbc.M200156200 . free .
- Hatakeyama M . Oncogenic mechanisms of the Helicobacter pylori CagA protein . Nature Reviews Cancer . 4 . 9 . 688–94 . September 2004 . 15343275 . 10.1038/nrc1433 . 1218835 .