Shelling (topology) explained
In mathematics, a shelling of a simplicial complex is a way of gluing it together from its maximal simplices (simplices that are not a face of another simplex) in a well-behaved way. A complex admitting a shelling is called shellable.
Definition
A d-dimensional simplicial complex is called pure if its maximal simplices all have dimension d. Let
be a finite or countably infinite simplicial complex. An ordering
of the maximal simplices of
is a
shelling if the complex
is pure and of dimension
for all
. That is, the "new" simplex
meets the previous simplices along some union
of top-dimensional simplices of the boundary of
. If
is the entire boundary of
then
is called
spanning.
For
not necessarily countable, one can define a shelling as a well-ordering of the maximal simplices of
having analogous properties.
Properties
- A shellable complex is homotopy equivalent to a wedge sum of spheres, one for each spanning simplex of corresponding dimension.
- A shellable complex may admit many different shellings, but the number of spanning simplices and their dimensions do not depend on the choice of shelling. This follows from the previous property.
Examples
- Every Coxeter complex, and more generally every building (in the sense of Tits), is shellable.[1]
- The boundary complex of a (convex) polytope is shellable.[2] [3] Note that here, shellability is generalized to the case of polyhedral complexes (that are not necessarily simplicial).
- There is an unshellable triangulation of the tetrahedron.[4]
References
- Book: Kozlov, Dmitry. Combinatorial Algebraic Topology . Springer . Berlin . 2008 . 978-3-540-71961-8.
Notes and References
- 0001-8708. 52. 3. 173–212. Björner. Anders. Anders Björner. Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings. Advances in Mathematics. 1984. 10.1016/0001-8708(84)90021-5. free.
- Bruggesser . H.. Mani . P.. Shellable Decompositions of Cells and Spheres.. Mathematica Scandinavica. 29. 197—205. 10.7146/math.scand.a-11045 . free.
- Book: Ziegler . Günter M. . Günter M. Ziegler. Lectures on polytopes. 8.2. Shelling polytopes. 239—246. Springer. 10.1007/978-1-4613-8431-1_8 . free.
- 1088-9485. 64. 3. 90–91. Rudin. Mary Ellen. Mary Ellen Rudin. An unshellable triangulation of a tetrahedron. Bulletin of the American Mathematical Society. 1958. 10.1090/s0002-9904-1958-10168-8. free.