In fluid mechanics, a shell balance can be used to determine the velocity profile, i.e,. how fluid velocity changes with position across a flow cross section.
A "shell" is a differential element of the flow. By looking at the momentum and forces on one small portion, it is possible to integrate over the flow to see the larger picture of the flow as a whole. The balance is determining what goes into and out of the shell. Momentum is created within the shell through fluid entering and leaving the shell and by shear stress. In addition, there are pressure and gravitational forces on the shell. From this, it is possible to find a velocity for any point across the flow.
Shell Balances can be used in many situations. For example, flow in a pipe, the flow of multiple fluids around each other, or flow due to pressure difference. Although terms in the shell balance and boundary conditions will change, the basic set up and process is the same.
The fluid must exhibit:
Boundary Conditions are used to find constants of integration.
A fluid is flowing between and in contact with two horizontal surfaces of contact area A. A differential shell of height Δy is utilized (see diagram below).
The top surface is moving at velocity U and the bottom surface is stationary.
Vx
To perform a shell balance, follow the following basic steps:
Boundary 1: Top Surface: y = 0 and Vx = U
Boundary 2: Bottom Surface: y = D and Vx = 0
For examples of performing shell balances, visit the resources listed below.