In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).
\underline{Z
If X is the prime spectrum of a ring R, then any R-module defines an OX-module (called an associated sheaf) in a natural way. Similarly, if R is a graded ring and X is the Proj of R, then any graded module defines an OX-module in a natural way. O-modules arising in such a fashion are examples of quasi-coherent sheaves, and in fact, on affine or projective schemes, all quasi-coherent sheaves are obtained this way.
\operatorname{H}i(X,-)
\Gamma(X,-)
\OmegaX
\omegaX
\OmegaX
Let (X, O) be a ringed space. If F and G are O-modules, then their tensor product, denoted by
F ⊗ OG
F ⊗ G
U\mapstoF(U) ⊗ O(U)G(U).
O(1) ⊗ O(-1)=O
Similarly, if F and G are O-modules, then
l{H}omO(F,G)
U\mapsto
\operatorname{Hom} | |
O|U |
(F|U,G|U)
l{H}omO(F,O)
\checkF
\check{E} ⊗ F\tol{H}omO(E,F)
\check{L} ⊗ L\simeqO,
\operatorname{H}1(X,l{O}*)
If E is a locally free sheaf of finite rank, then there is an O-linear map
\check{E} ⊗ E\simeq\operatorname{End}O(E)\toO
For any O-module F, the tensor algebra, exterior algebra and symmetric algebra of F are defined in the same way. For example, the k-th exterior power
wedgekF
wedgerF ⊗ wedgen-rF\to\det(F).
f*F
If G is an O-module, then the module inverse image
f*G
f-1G
⊗ | |
f-1O' |
O
f-1G
f-1O'\toO
O'\tof*O
There is an adjoint relation between
f*
f*
\operatorname{Hom}O(f*G,F)\simeq\operatorname{Hom}O'(G,f*F)
f*(F ⊗ f*E)\simeqf*F ⊗ E.
Let (X, O) be a ringed space. An O-module F is said to be generated by global sections if there is a surjection of O-modules:
oplusiO\toF\to0.
An example of such a sheaf is that associated in algebraic geometry to an R-module M, R being any commutative ring, on the spectrum of a ring Spec(R).Another example: according to Cartan's theorem A, any coherent sheaf on a Stein manifold is spanned by global sections. (cf. Serre's theorem A below.) In the theory of schemes, a related notion is ample line bundle. (For example, if L is an ample line bundle, some power of it is generated by global sections.)
An injective O-module is flasque (i.e., all restrictions maps F(U) → F(V) are surjective.) Since a flasque sheaf is acyclic in the category of abelian sheaves, this implies that the i-th right derived functor of the global section functor
\Gamma(X,-)
Let
M
A
X=\operatorname{Spec}(A)
D(f)=\{f\ne0\}=\operatorname{Spec}(A[f-1])
D(f)\subseteqD(g)
\rhog,:M[g-1]\toM[f-1]
\rhog,=\rhog,\circ\rhoh,
D(f)\mapstoM[f-1]
\widetilde{M}
The most basic example is the structure sheaf on X; i.e.,
l{O}X=\widetilde{A}
\widetilde{M}
l{O}X=\widetilde{A}
M\mapsto\widetilde{M}
l{O}X
\Gamma(X,-)
The construction has the following properties: for any A-modules M, N, and any morphism
\varphi:M\toN
M[f-1]\sim=\widetilde{M}|D(f)
\widetilde{M}p\simeqMp
(M ⊗ AN)\sim\simeq\widetilde{M} ⊗ \widetilde{A
\operatorname{Hom}A(M,N)\sim\simeql{H}om\widetilde{A
\operatorname{Hom}A(M,N)\simeq\Gamma(X,l{H}om\widetilde{A
(\varinjlim
\sim | |
M | |
i) |
\simeq\varinjlim\widetilde{Mi}
\sim
(\ker(\varphi))\sim=\ker(\widetilde{\varphi}),(\operatorname{coker}(\varphi))\sim=\operatorname{coker}(\widetilde{\varphi}),(\operatorname{im}(\varphi))\sim=\operatorname{im}(\widetilde{\varphi})
There is a graded analog of the construction and equivalence in the preceding section. Let R be a graded ring generated by degree-one elements as R0-algebra (R0 means the degree-zero piece) and M a graded R-module. Let X be the Proj of R (so X is a projective scheme if R is Noetherian). Then there is an O-module
\widetilde{M}
\widetilde{M}|\{f
\{f\ne0\}=\operatorname{Spec}(R[f-1]0)
\widetilde{M}
Example: Let R(1) be the graded R-module given by R(1)n = Rn+1. Then
O(1)=\widetilde{R(1)}
If F is an O-module on X, then, writing
F(n)=F ⊗ O(n)
\left(oplusn\Gamma(X,F(n))\right)\sim\toF,
See main article: sheaf cohomology.
Sheaf cohomology has a reputation for being difficult to calculate. Because of this, the next general fact is fundamental for any practical computation:
Serre's vanishing theorem[6] states that if X is a projective variety and F a coherent sheaf on it, then, for sufficiently large n, the Serre twist F(n) is generated by finitely many global sections. Moreover,
Let (X, O) be a ringed space, and let F, H be sheaves of O-modules on X. An extension of H by F is a short exact sequence of O-modules
0 → F → G → H → 0.
1(H,F) | |
\operatorname{Ext} | |
O |
1(H,F) | |
\operatorname{Ext} | |
O |
In the case where H is O, we have: for any i ≥ 0,
\operatorname{H}i(X,F)=
i(O,F), | |
\operatorname{Ext} | |
O |
\Gamma(X,-)=\operatorname{Hom}O(O,-).
Note: Some authors, notably Hartshorne, drop the subscript O.
Assume X is a projective scheme over a Noetherian ring. Let F, G be coherent sheaves on X and i an integer. Then there exists n0 such that
i(F, | |
\operatorname{Ext} | |
O |
G(n))=\Gamma(X,
i(F, | |
l{E}xt | |
O |
G(n))),n\gen0
l{Ext}(l{F},l{G})
l{F}
… \tol{L}2\tol{L}1\tol{L}0\tol{F}\to0
l{RHom}(l{F},l{G})=l{Hom}(l{L}\bullet,l{G})
l{Ext}k(l{F},l{G})=h
k(l{Hom}(l{L} | |
\bullet,l{G})) |
Consider a smooth hypersurface
X
d
l{O}(-d)\tol{O}
i(l{O} | |
l{Ext} | |
X,l{F})= |
hi(l{Hom}(l{O}(-d)\tol{O},l{F}))
Consider the scheme
X=Proj\left(
C[x0,\ldots,xn] | |
(f)(g1,g2,g3) |
\right)\subseteqPn
(f,g1,g2,g3)
\deg(f)=d
\deg(gi)=ei
l{O}(-d-e1-e2-e3)\xrightarrow{\begin{bmatrix}g3\ -g2\ -g1\end{bmatrix}}\begin{matrix}l{O}(-d-e1-e2)\ ⊕ \ l{O}(-d-e1-e3)\ ⊕ \ l{O}(-d-e2-e3)\end{matrix}\xrightarrow{\begin{bmatrix}g2&g3&0\ -g1&0&-g3\ 0&-g1&g2\end{bmatrix}}\begin{matrix}l{O}(-d-e1)\ ⊕ \ l{O}(-d-e2)\ ⊕ \ l{O}(-d-e3)\end{matrix}\xrightarrow{\begin{bmatrix}fg1&fg2&fg3\end{bmatrix}}l{O}
l{O}X,
i(l{O} | |
l{Ext} | |
X,l{F}) |
l{H}omO(F,O)x\to
\operatorname{Hom} | |
Ox |
(Fx,Ox),
F ⊗ G\simeqO