\Phi
\Phi
The theorem states that: given a root system
\Phi
()
\langle\beta,\alpha\rangle=2(\alpha,\beta)/(\alpha,\alpha),\beta,\alpha\inE
\{\alpha1,...,\alphan\}
\Phi
akg
3n
ei,fi,hi
[hi,hj]=0,
[ei,fi]=hi,[ei,fj]=0,i\nej
[hi,ej]=\langle\alphai,\alphaj\rangleej,[hi,fj]=-\langle\alphai,\alphaj\ranglefj
-\langle\alphai,\alphaj\rangle+1 | |
\operatorname{ad}(e | |
i) |
(ej)=0,i\nej
-\langle\alphai,\alphaj\rangle+1 | |
\operatorname{ad}(f | |
i) |
(fj)=0,i\nej
hi
\Phi
The square matrix
[\langle\alphai,\alphaj\rangle]1
akg(A)
A
The proof here is taken from and .Let
aij=\langle\alphai,\alphaj\rangle
\widetilde{akg}
ei,fi,hi
[hi,hj]=0
[ei,fi]=hi
[ei,fj]=0,i\nej
[hi,ej]=aijej,[hi,fj]=-aijfj
Let
ak{h}
hi
v1,...,vn
\pi:\widetilde{akg}\toak{gl}(T)
a\inT,h\inak{h},λ\inak{h}*
\pi(fi)a=vi ⊗ a,
\pi(h)1=\langleλ,h\rangle1,\pi(h)(vj ⊗ a)=-\langle\alphaj,h\ranglevj ⊗ a+vj ⊗ \pi(h)a
\pi(ei)1=0,\pi(ei)(vj ⊗ a)=\deltaij\alphai(a)+vj ⊗ \pi(ei)a
\widetilde{ak{n}}+
\widetilde{ak{n}}-
\widetilde{akg}
ei
fi
\widetilde{ak{n}}+
\widetilde{ak{n}}-
ei
fi
\widetilde{akg}=\widetilde{ak{n}}+oplusak{h}oplus\widetilde{ak{n}}-
\widetilde{ak{n}}+=
oplus | |
0\ne\alpha\inQ+ |
\widetilde{akg}\alpha
\widetilde{akg}\alpha=\{x\in\widetilde{akg}|[h,x]=\alpha(h)x,h\inakh\}
\widetilde{ak{n}}-=
oplus | |
0\ne\alpha\inQ+ |
\widetilde{akg}-\alpha
\widetilde{akg}=\left(
oplus | |
0\ne\alpha\inQ+ |
\widetilde{akg}-\alpha\right)oplusakhoplus\left(
oplus | |
0\ne\alpha\inQ+ |
\widetilde{akg}\alpha\right)
For each ideal
aki
\widetilde{akg}
aki
aki=oplus\alpha(\widetilde{akg}\alpha\capaki)
akh
akh
akr
akh
akr=(akr\cap\widetilde{akn}-) ⊕ (akr\cap\widetilde{akn}+)
\widetilde{akg}
akg=\widetilde{akg}/akr
akh
akh
akg=ak{n}+oplusak{h}oplusak{n}-
ak{n}+
ak{n}-
ei
fi
One then shows: (1) the derived algebra
[akg,akg]
akg
[akg,akg]=akg
. Victor Kac. Infinite dimensional Lie algebras. 3rd . . 1990. 0-521-46693-8.
. James E. Humphreys. Introduction to Lie Algebras and Representation Theory . . Berlin, New York . 978-0-387-90053-7 . 1972 . registration .
. Algèbres de Lie semi-simples complexes. Jean-Pierre Serre. 1966. Benjamin. Complex Semisimple Lie Algebras. 978-3-540-67827-4. en. Jones. G. A..