Sentinel-1 Explained
Sentinel-1 |
Manufacturer: |
|
Operator: | European Space Agency |
Applications: | Land and sea monitoring, natural disasters mapping, sea ice observations, ships detection |
Spacecraft Type: | Satellite |
Constellation: | Active: 1 |
Design Life: | 7 years (12 years of consumables) |
Launch Mass: | 2300kg (5,100lb) |
Dry Mass: | 2170kg (4,780lb) |
Dimensions: | 3.9x |
Power: | 5.9kW[2] |
Batteries: | 324 Ah |
Status: | Active |
Built: | 4 |
Orders: | 4 |
Launched: | 2 |
Operational: | 1 |
Retired: | 1 |
First: | Sentinel-1A (3 April 2014)[3] |
Last: | Sentinel-1B (25 April 2016) |
Subsatellite Of: | Copernicus Programme |
Next: | Sentinel-2 |
Sentinel-1 is the first of the Copernicus Programme satellite constellations conducted by the European Space Agency.[4] The mission was originally composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B, which shared the same orbital plane. Two more satellites, Sentinel-1C and Sentinel-1D are in development. Sentinel-1B was retired following a power supply issue on December 23, 2021, leaving Sentinel-1A the only satellite of the constellation currently operating.[5] Sentinel-1C is currently planned to launch in the final quarter of 2024.[6]
Overview
The first satellite, Sentinel-1A, launched on 3 April 2014, and Sentinel-1B was launched on 25 April 2016. Both satellites lifted off from the Guiana Space Centre in Kourou, French Guiana, and each on a Soyuz rocket.[7] Sentinel-1C and 1D are in development.[8] An equipment failure on Sentinel-1B in December 2021 accelerated work on Sentinel-1C,[9] originally planned to launch in December 2023.[10]
The satellites have a Sun-synchronous, near-polar (98.18° inclination) orbit. Their orbits have a 12-day repeat cycle and complete 175 orbits per cycle (having a 98.6 minute orbital period). The satellites operate at 693km (431miles) altitude, with 3-axis altitude stabilization.
The European Space Agency and European Commission's policies makes Sentinel-1's data easily accessible. Various users can acquire the data and use it for public, scientific, or commercial purposes for free.
Instruments
Sentinel-1 spacecraft are designed to carry a C-band synthetic-aperture radar (C-SAR) instrument which provides a collection of data in all-weather, day or night, as well as an SDRAM-based Data Storage and Handling Assembly (DSHA).[11]
The single C-SAR instrument with its electronics provides 1 dB radiometric accuracy with a central frequency at 5.405 GHz.[12] This instrument has a spatial resolution down to 5m (16feet) and a swath of up to 410km (260miles).[13] The data collected in C-SAR was made to be continuous after the termination of a previous mission (Envisat mission).[14]
The DSHA has an active data storage capacity of about 1,443 Gbit (168 GiB), receiving data streams from SAR-SES over two independent links gathering SAR_H and SAR_V polarization, with a variable data rate up to 640 Mbit/s on each link, and providing 520 Mbit/s X-band fixed-user data-downlink capability over two independent channels towards ground.
Operational modes and data products
Sentinel-1 has four operational modes and four types of data products available. All data levels are publicly available for free online within 24 hours of observation.[15]
Operational modes
The four operational modes offered by Sentinel-1 are:[16] [17]
- Strip Map (SM) Mode, which features 5by spatial resolution and an 80km (50miles) swath. The sole uses of SM are to monitor small islands as well as emergency management for extraordinary events upon request. Data products are offered in single (HH or VV) or double (HH + HV or VV + VH) polarization.
- Interferometric Wide Swath (IW) Mode, featuring 5by spatial resolution and a 250km (160miles) swath. IW is the main operational mode over land and accomplishes interferometry through burst synchronization. Data products are offered in single (HH or VV) or double (HH + HV or VV + VH) polarization.
- Extra Wide Swath (EW) Mode, featuring 20by spatial resolution and a 400km (200miles) swath. EW is used mainly to monitor wide coastal areas for phenomena such as shipping traffic and potential environmental hazards like oil spills or changes in sea ice. Data products are available in single (HH or VV) or double (HH + HV or VV + VH) polarization.
- Wave (WV) Mode, which features 5by resolution and a low data rate. It produces 20by sample images along the orbit at intervals of 100km (100miles). This is the main operational mode over open ocean, with data offered only in single (HH or VV) polarization.
Data products
The four types of data products offered by Sentinel-1 are:
- Raw Level 0 data
- Processed Level 1 Single Look Complex (SLC) data, which consists of complex images with phase and amplitude of specified areas
- Ground Range Detected (GRD) Level 1 data, which is only systematically distributed multi-looked intensity
- Level 2 Ocean (OCN) data, consisting of systematically distributed data of the ocean's geophysical parameters
Applications
There are a wide range of applications for the data collected via the Sentinel-1 mission. A few of these uses include marine and land monitoring, emergency response due to environmental disasters, and economic applications. A major goal of the mission was to provide C-Band SAR data. Sentinel-1 provides continuity of data from the ERS and Envisat missions, with further enhancements in terms of revisit, coverage, timeliness and reliability of service. Recently, Sentinel-1 has worked in conjunction with SMAP to help achieve a more accurate measure of soil moisture estimates.[18] Observations from both instruments show to be complementary of each other as they combine data of soil moisture contents.
A summary of the main applications of Sentinel-1 include:[19]
- Marine monitoring: Sea-ice levels and conditions, oil spills, ship activity, and information about marine winds
- Land monitoring: Agriculture, forestry, and land subsidence
- Emergency response: Flooding, landslides, volcanoes and earthquakes
Measuring land subsidence
The C-SAR instrument is capable of measuring land subsidence through the creation of interferometric synthetic-aperture radar (InSAR) images. The analysis of phase changes between two or more synthetic aperture radar images taken at different times is able to create maps of the digital elevation and measure the land surface deformation of an area. High spatial (20m) and temporal (6 days) resolutions allow Sentinel-1 to improve on current InSAR techniques and provide systematic continuity to the data.[20]
Earthquake monitoring
Shortly after the August 2014 South Napa earthquake, data collected by Sentinel-1A was used to develop an interferometric synthetic-aperture radar, or InSAR, image of the affected region. The Sentinel-1 satellites are expected to make analysis of earthquakes using InSAR techniques quicker and simpler.[21]
Industrial
The prime contractor of the mission is Thales Alenia Space Italy, with whole system integration and also with production of platform Spacecraft Management Unit (SMU) and payload Data Storage and Handling Assembly (DSHA). Sentinel-1A was constructed in Rome, Italy. Other technologies such as the T/R modules, the C-band synthetic-aperture radar antenna, the advanced data management and transmission subsystems, and the on-board computer, were developed in L'Aquila and Milan.[22] The C-SAR instrument is the responsibility of Astrium Gmbh.
The ground segment prime contractor is Astrium with subcontractors Telespazio, WERUM, Advanced Computer Systems and Aresys. Final test verification of the satellite was completed at Thales Alenia Space's clean rooms in Rome and Cannes.[22]
Spacecraft
- Sentinel-1A – launched on 3 April 2014[3]
- Sentinel-1B – launched on 25 April 2016,[3] unavailable due to a power issue since 23 December 2021, mission end declared 3 August 2022
- Sentinel-1C – development contract signed with Thales Alenia Space of Italy in December 2015; the launch was scheduled for April 2023[9] [23] but was delayed due to a launch failure of Vega-C in December 2022.[24] the launch was scheduled for late 2024.[25]
- Sentinel-1D – development contract signed with Thales Alenia Space of Italy in December 2015. launch scheduled for the second half of 2024[26]
Gallery
Examples of images produced from Sentinel-1 data.
External links
Notes and References
- Web site: Sentinel 1 . Earth Online . . 17 August 2014 . 2 March 2014 . https://web.archive.org/web/20140302223430/https://earth.esa.int/web/guest/missions/esa-future-missions/sentinel-1 . dead .
- Web site: Sentinel 1 Datasheet . . August 2013 . 17 August 2014.
- Web site: Earth Online – Sentinel 1 . European Space Agency . 3 April 2014 . 2 March 2014 . https://web.archive.org/web/20140302223430/https://earth.esa.int/web/guest/missions/esa-future-missions/sentinel-1 . dead .
- Web site: Sentinel-1 . Sentinel Online . European Space Agency . 21 March 2018.
- Web site: Mission ends for Copernicus Sentinel-1B satellite . The European Space Agency.
- Web site: Sentinel-1C . University of Twente.
- News: Soyuz overview . Arianespace . 21 March 2018.
- Web site: Foust . Jeff . ESA considering moving up radar satellite launch after Sentinel-1B malfunction . . 18 January 2022 . 19 January 2022.
- Web site: Oppdraget over for radarsatellitten Sentinel-1B . Mission over for the Sentinel-1B radar satellite . . 12 August 2022 . 14 September 2022 . norwegian.
- https://webapps.itc.utwente.nl/Sensor/getsat.aspx?name=Sentinel-1C Sentinel-1C
- Web site: Sentinel-1: Instrument Payload . Sentinel Online . European Space Agency . 7 March 2017.
- Sentinel-1: The Radar Mission for GMES Operational Land and Sea Services . Bulletin . Evert . Attema . Piere . Bargellini . Peter . Edwards . Guido . Levrini . Svein . Lokas . Ludwig . Moeller . Betlem . Rosich-Tell . Patrizia . Secchi . Ramon . Torres . Malcolm . Davidson . Paul . Snoeij . 1 . 131 . 10–17 . August 2007. 2007ESABu.131...10A .
- Web site: User Guides - Sentinel-1 SAR - Extra Wide Swath - Sentinel Online . 2023-04-26 . Sentinel Online . en-US.
- Web site: Sentinel-1 - ESA EO Missions - Earth Online - ESA . 2020-03-05 . earth.esa.int.
- Web site: Sentinel-1 - Data Distribution Schedule - Missions - Sentinel Online . 2020-03-05 . sentinel.esa.int.
- Web site: User Guides - Sentinel-1 SAR - Acquisition Modes . Sentinel Online . European Space Agency . 12 March 2018.
- Web site: Sentinel 1 Data Access and Products . European Space Agency . March 2015 . 11 March 2018.
- Lievens . H. . Reichle . R. H. . Liu . Q. . De Lannoy . G. J. M. . Dunbar . R. S. . Kim . S. B. . Das . N. N. . Cosh . M. . Walker . J. P. . 2017-06-27 . Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates . Geophysical Research Letters . 44 . 12 . 6145–6153 . 2017GeoRL..44.6145L . 10.1002/2017gl073904 . 0094-8276 . 5896568 . 29657343.
- Web site: User Guides - Sentinel-1 SAR - Applications . Sentinel Online . European Space Agency . 22 March 2018.
- Cian. Fabio. Blasco. José Manuel Delgado. Carrera. Lorenzo. March 2019. Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences. en. 9. 3. 124. 10.3390/geosciences9030124. 2019Geosc...9..124C. free.
- News: Sentinel system pictures Napa quake . BBC News . Jonathan . Amos . 2 September 2014 . 2 September 2014.
- Web site: Sentinel-1A Arrives at Launch Site in French Guiana . Thales Group . 24 February 2014 . 15 March 2018.
- Web site: Decolla la space economy italiana . Take off of the Italian space economy . Airpress . it . 15 December 2015. 2015-12-15 .
- News: Carbon component blamed for Vega rocket loss . 4 August 2023 . BBC News . 3 March 2023.
- Web site: Foust . Jeff . Europe considers launching Copernicus satellite on Falcon 9 . SpaceNews . 19 June 2024 . 12 January 2024.
- Arianespace supporting the European Union's Copernicus programme with Vega C . 29 November 2022 . 29 November 2022 . Arianespace.