Uniform k 21 polytope explained

In geometry, a uniform k21 polytope is a polytope in k + 4 dimensions constructed from the En Coxeter group, and having only regular polytope facets. The family was named by their Coxeter symbol k21 by its bifurcating Coxeter–Dynkin diagram, with a single ring on the end of the k-node sequence.

Thorold Gosset discovered this family as a part of his 1900 enumeration of the regular and semiregular polytopes, and so they are sometimes called Gosset's semiregular figures. Gosset named them by their dimension from 5 to 9, for example the 5-ic semiregular figure.

Family members

The sequence as identified by Gosset ends as an infinite tessellation (space-filling honeycomb) in 8-space, called the E8 lattice. (A final form was not discovered by Gosset and is called the E9 lattice: 621. It is a tessellation of hyperbolic 9-space constructed of ∞ 9-simplex and ∞ 9-orthoplex facets with all vertices at infinity.)

The family starts uniquely as 6-polytopes. The triangular prism and rectified 5-cell are included at the beginning for completeness. The demipenteract also exists in the demihypercube family.

They are also sometimes named by their symmetry group, like E6 polytope, although there are many uniform polytopes within the E6 symmetry.

The complete family of Gosset semiregular polytopes are:

  1. triangular prism: −121 (2 triangles and 3 square faces)
  2. rectified 5-cell: 021, Tetroctahedric (5 tetrahedra and 5 octahedra cells)
  3. demipenteract: 121, 5-ic semiregular figure (16 5-cell and 10 16-cell facets)
  4. 2 21 polytope: 221, 6-ic semiregular figure (72 5-simplex and 27 5-orthoplex facets)
  5. 3 21 polytope: 321, 7-ic semiregular figure (576 6-simplex and 126 6-orthoplex facets)
  6. 4 21 polytope: 421, 8-ic semiregular figure (17280 7-simplex and 2160 7-orthoplex facets)
  7. 5 21 honeycomb: 521, 9-ic semiregular check tessellates Euclidean 8-space (∞ 8-simplex and ∞ 8-orthoplex facets)
  8. 6 21 honeycomb: 621, tessellates hyperbolic 9-space (∞ 9-simplex and ∞ 9-orthoplex facets)

Each polytope is constructed from (n - 1)-simplex and (n - 1)-orthoplex facets.

The orthoplex faces are constructed from the Coxeter group Dn-1 and have a Schläfli symbol of rather than the regular . This construction is an implication of two "facet types". Half the facets around each orthoplex ridge are attached to another orthoplex, and the others are attached to a simplex. In contrast, every simplex ridge is attached to an orthoplex.

Each has a vertex figure as the previous form. For example, the rectified 5-cell has a vertex figure as a triangular prism.

Elements

Gosset semiregular figures
n-ick21GraphName
Coxeter
diagram
FacetsElements
(n - 1)-simplex
(n - 1)-orthoplex
VerticesEdgesFacesCells4-faces5-faces6-faces7-faces
3-ic-121Triangular prism
2 triangles

3 squares

695     
4-ic021Rectified 5-cell
5 tetrahedron

5 octahedron

10303010    
5-ic121Demipenteract
16 5-cell

10 16-cell

168016012026   
6-ic221221 polytope
72 5-simplexes

27 5-orthoplexes

27216720108064899  
7-ic321321 polytope
576 6-simplexes

126 6-orthoplexes

56756403210080120966048702 
8-ic421421 polytope
17280 7-simplexes

2160 7-orthoplexes

24067206048024192048384048384020736019440
9-ic521521 honeycomb
8-simplexes

8-orthoplexes

10-ic621621 honeycomb
9-simplexes

9-orthoplexes

See also

References

External links