Semiperfect number explained

Number:infinity
First Terms:6, 12, 18, 20, 24, 28, 30
Oeis:A005835
Oeis Name:Pseudoperfect (or semiperfect) numbers

In number theory, a semiperfect number or pseudoperfect number is a natural number n that is equal to the sum of all or some of its proper divisors. A semiperfect number that is equal to the sum of all its proper divisors is a perfect number.

The first few semiperfect numbers are: 6, 12, 18, 20, 24, 28, 30, 36, 40, ...

Properties

Primitive semiperfect numbers

A primitive semiperfect number (also called a primitive pseudoperfect number, irreducible semiperfect number or irreducible pseudoperfect number) is a semiperfect number that has no semiperfect proper divisor.[2]

The first few primitive semiperfect numbers are 6, 20, 28, 88, 104, 272, 304, 350, ...

There are infinitely many such numbers. All numbers of the form 2mp, with p a prime between 2m and 2m+1, are primitive semiperfect, but this is not the only form: for example, 770.[1] [2] There are infinitely many odd primitive semiperfect numbers, the smallest being 945, a result of Paul Erdős:[2] there are also infinitely many primitive semiperfect numbers that are not harmonic divisor numbers.[1]

Every semiperfect number is a multiple of a primitive semiperfect number.

See also

References

Notes and References

  1. Zachariou+Zachariou (1972)
  2. Guy (2004) p. 75