Semialgebraic set explained

In mathematics, a basic semialgebraic set is a set defined by polynomial equalities and polynomial inequalities, and a semialgebraic set is a finite union of basic semialgebraic sets. A semialgebraic function is a function with a semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers.

Definition

Let

F

be a real closed field (For example

F

could be the field of real numbers

R

).A subset

S

of

Fn

is a semialgebraic set if it is a finite union of sets defined by polynomial equalities of the form

\{(x1,...,xn)\inFn\midP(x1,...,xn)=0\}

and of sets defined by polynomial inequalities of the form

\{(x1,...,xn)\inFn\midP(x1,...,xn)>0\}.

Properties

Similarly to algebraic subvarieties, finite unions and intersections of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic set is again semialgebraic. Finally, and most importantly, the Tarski–Seidenberg theorem says that they are also closed under the projection operation: in other words a semialgebraic set projected onto a linear subspace yields another semialgebraic set (as is the case for quantifier elimination). These properties together mean that semialgebraic sets form an o-minimal structure on R.

A semialgebraic set (or function) is said to be defined over a subring A of R if there is some description, as in the definition, where the polynomials can be chosen to have coefficients in A.

On a dense open subset of the semialgebraic set S, it is (locally) a submanifold. One can define the dimension of S to be the largest dimension at points at which it is a submanifold. It is not hard to see that a semialgebraic set lies inside an algebraic subvariety of the same dimension.

See also

References

External links