Semiabelian group explained
Semiabelian group should not be confused with semiabelian scheme.
Semiabelian groups is a class of groups first introduced by and named by . It appears in Galois theory, in the study of the inverse Galois problem or the embedding problem which is a generalization of the former.
Definition
The family
of finite semiabelian groups is the minimal family which contains the
trivial group and is
closed under the following operations:
acts on a finite abelian group
, then
;
and
is a
normal subgroup, then
.
The class of finite groups G with a regular realizations over
is closed under taking semidirect products with abelian kernels, and it is also closed under quotients. The class
is the smallest class of finite groups that have both of these closure properties as mentioned above.
Example
- Abelian groups, dihedral groups, and all -groups of order less than
are semiabelian.
- The following are equivalent for a non-trivial finite group G :
(i) G is semiabelian.
(ii) G possess an abelian
and a some proper semiabelian subgroup
U with
.
Therefore G is an epimorphism of a split group extension with abelian kernel.
in one variable for any field
and therefore are
Galois groups over every Hilbertian field.
See also
References
Bibliography
- Web site: Blum-Smith . Benjamin . Semiabelian Groups and the Inverse Galois Problem . 2014. Courant Institute of Mathematical Sciences.
- 10.1016/j.jnt.2014.03.017 . free . Minimal ramification and the inverse Galois problem over the rational function field Fp(t) . 2014 . De Witt . Meghan . Journal of Number Theory . 143 . 62–81 . 119155359 .
- 10.1007/BF02567989. On geometric embedding problems and semiabelian groups . 1995 . Dentzer . Ralf . Manuscripta Mathematica . 86 . 199–216 . 122932323. 0836.12002 .
- 10.2140/ant.2010.4.1077. On the minimal ramification problem for semiabelian groups . 2010 . Kisilevsky . Hershy . Neftin . Danny . Sonn . Jack . Algebra & Number Theory . 4 . 8 . 1077–1090 . 73636129. 1221.11218 . free . 0912.1964 .
- 10.1112/S0010437X10004719 . free . On the minimal ramification problem for ℓ-groups . 2010 . Kisilevsky . Hershy . Sonn . Jack . Compositio Mathematica . 146 . 3 . 599–606 . 16101476 . 0811.2978 .
- 10.1016/j.jalgebra.2021.12.026 . On finite embedding problems with abelian kernels . 2022 . Legrand . François . Journal of Algebra . 595 . 633–659 . 2112.12170. 245424796 .
- Book: 10.1007/BFb0098329 . Einbettungsprobleme Über Hilbertkörpern . [{{Google books|awB8CwAAQBAJ|page=215|plainurl=yes}} Konstruktive Galoistheorie ]. Lecture Notes in Mathematics . 1987 . Matzat . Bernd Heinrich . 1284 . 215–268 . 978-3-540-18444-7 . de.
- Book: Malle . Gunter . Matzat . B. Heinrich . Inverse Galois Theory . 1999. Springer Monographs in Mathematics . 978-3-662-12123-8 . 263–360 . Embedding Problems. 10.1007/978-3-662-12123-8_4. .
- Book: 10.1090/conm/186/02174 . Parametric solutions of embedding problems . [{{Google books|Y8caCAAAQBAJ|page=33|plainurl=yes}} Recent Developments in the Inverse Galois Problem ]. Contemporary Mathematics . 1995 . Matzat . B. H. . 186 . 33–50 . 9780821802991.
- 10.1016/j.jalgebra.2011.07.016 . free . On semiabelian p-groups . 2011 . Neftin . Danny . Journal of Algebra . 344 . 60–69 . 16647073 . 0908.1472.
- 0908.1472v2 . Neftin . Danny . On semiabelian p-groups . 2009 . math.GR .
- 10.1017/S0017089500030433 . free . Construction of semiabelian Galois extensions . 1995 . Stoll . Michael . Glasgow Mathematical Journal . 37 . 99–104 . 122194283 .
- 10.2140/ant.2018.12.2387 . Realizing 2-groups as Galois groups following Shafarevich and Serre . 2018 . Schmid . Peter . Algebra & Number Theory . 12 . 10 . 2387–2401 . 126693959.
- Thompson . John G . 1984 . Some finite groups which appear as gal L/K, where K ⊆ Q(μn) . Journal of Algebra . 89 . 2 . 437–499 . 10.1016/0021-8693(84)90228-x . free . 0021-8693.
Further reading
- Book: 10.1007/978-3-0348-8658-1_4 . Der Kenntnisstand in der konstruktiven Galoisschen Theorie . [{{Google books|LyXyBwAAQBAJ|page=65|plainurl=yes}} Representation Theory of Finite Groups and Finite-Dimensional Algebras ]. 1991 . Matzat . B. Heinrich . 65–98 . 978-3-0348-9720-4 . de. none.
- 10.1016/0001-8708(82)90036-6 . free . Generic Galois extensions and problems in field theory . 1982 . Saltman . David J. . . 43 . 3 . 250–283 . none.
External links