In quantum field theory, the energy that a particle has as a result of changes that it causes in its environment defines self-energy
\Sigma
Mathematically, this energy is equal to the so-called on mass shell value of the proper self-energy operator (or proper mass operator) in the momentum-energy representation (more precisely, to \hbar
In general, the on-the-mass-shell value of the self-energy operator in the momentum-energy representation is complex. In such cases, it is the real part of this self-energy that is identified with the physical self-energy (referred to above as particle's "self-energy"); the inverse of the imaginary part is a measure for the lifetime of the particle under investigation. For clarity, elementary excitations, or dressed particles (see quasi-particle), in interacting systems are distinct from stable particles in vacuum; their state functions consist of complicated superpositions of the eigenstates of the underlying many-particle system, which only momentarily, if at all, behave like those specific to isolated particles; the above-mentioned lifetime is the time over which a dressed particle behaves as if it were a single particle with well-defined momentum and energy.
The self-energy operator (often denoted by
\Sigma | |
M | |
G | |
0 |
G | |
G=
G | |
0 |
+G0\SigmaG.
Multiplying on the left by the inverse
-1 | |
G | |
0 |
G0
G-1
\Sigma=
-1 | |
G | |
0 |
-G-1.
The photon and gluon do not get a mass through renormalization because gauge symmetry protects them from getting a mass. This is a consequence of the Ward identity. The W-boson and the Z-boson get their masses through the Higgs mechanism; they do undergo mass renormalization through the renormalization of the electroweak theory.
Neutral particles with internal quantum numbers can mix with each other through virtual pair production. The primary example of this phenomenon is the mixing of neutral kaons. Under appropriate simplifying assumptions this can be described without quantum field theory.
In chemistry, the self-energy or Born energy of an ion is the energy associated with the field of the ion itself.
In solid state and condensed-matter physics self-energies and a myriad of related quasiparticle properties are calculated by Green's function methods and Green's function (many-body theory) of interacting low-energy excitations on the basis of electronic band structure calculations. Self-energies also find extensive application in the calculation of particle transport through open quantum systems and the embedding of sub-regions into larger systems (for example the surface of a semi-infinite crystal).