Sedenion Explained

Official Name:Sedenions
Symbol:

S

Type:nonassociative algebra
Units:e0, ..., e15
Identity:e0
Properties:power associativity
distributivity

S

. They are obtained by applying the Cayley–Dickson construction to the octonions, and as such the octonions are isomorphic to a subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, sometimes called the 32-ions or trigintaduonions.[1] It is possible to continue applying the Cayley–Dickson construction arbitrarily many times.

The term sedenion is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of 4 × 4 matrices over the real numbers, or that studied by .

Arithmetic

Like octonions, multiplication of sedenions is neither commutative nor associative.But in contrast to the octonions, the sedenions do not even have the property of being alternative.They do, however, have the property of power associativity, which can be stated as that, for any element x of

S

, the power

xn

is well defined. They are also flexible.

Every sedenion is a linear combination of the unit sedenions

e0

,

e1

,

e2

,

e3

, ...,

e15

,which form a basis of the vector space of sedenions. Every sedenion can be represented in the form

x=x0e0+x1e1+x2e2++x14e14+x15e15.

Addition and subtraction are defined by the addition and subtraction of corresponding coefficients and multiplication is distributive over addition.

Like other algebras based on the Cayley–Dickson construction, the sedenions contain the algebra they were constructed from. So, they contain the octonions (generated by

e0

to

e7

in the table below), and therefore also the quaternions (generated by

e0

to

e3

), complex numbers (generated by

e0

and

e1

) and real numbers (generated by

e0

).

e0

and multiplicative inverses, but they are not a division algebra because they have zero divisors. This means that two nonzero sedenions can be multiplied to obtain zero: an example is

(e3+e10)(e6-e15)

. All hypercomplex number systems after sedenions that are based on the Cayley–Dickson construction also contain zero divisors.

A sedenion multiplication table is shown below:

eiej

ej

e0

!

e1

e2

!

e3

e4

!

e5

e6

!

e7

e8

!

e9

e10

!

e11

e12

!

e13

e14

!

e15

ei

e0

<
-- color: white; when minus sign -->

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

e1

e1

-e0

e3

-e2

e5

-e4

-e7

e6

e9

-e8

-e11

e10

-e13

e12

e15

-e14

e2

e2

-e3

-e0

e1

e6

e7

-e4

-e5

e10

e11

-e8

-e9

-e14

-e15

e12

e13

e3

e3

e2

-e1

-e0

e7

-e6

e5

-e4

e11

-e10

e9

-e8

-e15

e14

-e13

e12

e4

e4

-e5

-e6

-e7

-e0

e1

e2

e3

e12

e13

e14

e15

-e8

-e9

-e10

-e11

e5

e5

e4

-e7

e6

-e1

-e0

-e3

e2

e13

-e12

e15

-e14

e9

-e8

e11

-e10

e6

e6

e7

e4

-e5

-e2

e3

-e0

-e1

e14

-e15

-e12

e13

e10

-e11

-e8

e9

e7

e7

-e6

e5

e4

-e3

-e2

e1

-e0

e15

e14

-e13

-e12

e11

e10

-e9

-e8

e8

e8

-e9

-e10

-e11

-e12

-e13

-e14

-e15

-e0

e1

e2

e3

e4

e5

e6

e7

e9

e9

e8

-e11

e10

-e13

e12

e15

-e14

-e1

-e0

-e3

e2

-e5

e4

e7

-e6

e10

e10

e11

e8

-e9

-e14

-e15

e12

e13

-e2

e3

-e0

-e1

-e6

-e7

e4

e5

e11

e11

-e10

e9

e8

-e15

e14

-e13

e12

-e3

-e2

e1

-e0

-e7

e6

-e5

e4

e12

e12

e13

e14

e15

e8

-e9

-e10

-e11

-e4

e5

e6

e7

-e0

-e1

-e2

-e3

e13

e13

-e12

e15

-e14

e9

e8

e11

-e10

-e5

-e4

e7

-e6

e1

-e0

e3

-e2

e14

e14

-e15

-e12

e13

e10

-e11

e8

e9

-e6

-e7

-e4

e5

e2

-e3

-e0

e1

e15

e15

e14

-e13

-e12

e11

e10

-e9

e8

-e7

e6

-e5

-e4

e3

e2

-e1

-e0

Sedenion properties

From the above table, we can see that:

e0ei=eie0=eiforalli,

eiei=-e0fori0,

and

eiej=-ejeiforijwithi,j0.

Anti-associative

The sedenions are not fully anti-associative. Choose any four generators,

i,j,k

and

l

. The following 5-cycle shows that these five relations cannot all be anti-associative.

(ij)(kl) = -((ij)k)l = (i(jk))l = -i((jk)l) = i(j(kl)) = -(ij)(kl) = 0

In particular, in the table above, using

e1,e2,e4

and

e8

the last expression associates.

(e1e2)e12=e1(e2e12)=-e15

Quaternionic subalgebras

The 35 triads that make up this specific sedenion multiplication table with the 7 triads of the octonions used in creating the sedenion through the Cayley–Dickson construction shown in bold:

The binary representations of the indices of these triples bitwise XOR to 0.

Zero divisors

The list of 84 sets of zero divisors

\{ea,eb,ec,ed\}

, where

(ea+eb)\circ(ec+ed)=0

\begin\text \quad \ \\\text ~ (e_a + e_b) \circ (e_c + e_d) = 0 \\\begin1 \leq a \leq 6, & c > a, & 9 \leq b \leq 15 \\9 \leq c \leq 15 & & -9 \geq d \geq -15\end \\ \\\begin\ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\\ \ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\\ \ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\\ \ & \ &\ & \ \\\ & \ &\ & \ \\\ & \ &\ & \ \\\\ \ & \ &\ & \ \\\ & \ &\ & \ \\\\ \ & \ &\ & \\end\end

Applications

showed that the space of pairs of norm-one sedenions that multiply to zero is homeomorphic to the compact form of the exceptional Lie group G2. (Note that in his paper, a "zero divisor" means a pair of elements that multiply to zero.)

SU(3)c x U(1)em
can be represented using the algebra of the complexified sedenions

C ⊗ S

. Their reasoning follows that a primitive idempotent projector

\rho+=1/2(1+ie15)

— where

e15

is chosen as an imaginary unit akin to

e7

for

O

in the Fano plane — that acts on the standard basis of the sedenions uniquely divides the algebra into three sets of split basis elements for

C ⊗ O

, whose adjoint left actions on themselves generate three copies of the Clifford algebra

Cl(6)

which in-turn contain minimal left ideals that describe a single generation of fermions with unbroken
SU(3)c x U(1)em
gauge symmetry. In particular, they note that tensor products between normed division algebras generate zero divisors akin to those inside

S

, where for

C ⊗ O

the lack of alternativity and associativity does not affect the construction of minimal left ideals since their underlying split basis requires only two basis elements to be multiplied together, in-which associativity or alternativity are uninvolved. Still, these ideals constructed from an adjoint algebra of left actions of the algebra on itself remain associative, alternative, and isomorphic to a Clifford algebra. Altogether, this permits three copies of

(C ⊗ O)L\congCl(6)

to exist inside

(C ⊗ S)L

. Furthermore, these three complexified octonion subalgebras are not independent; they share a common

Cl(2)

subalgebra, which the authors note could form a theoretical basis for CKM and PMNS matrices that, respectively, describe quark mixing and neutrino oscillations.

Sedenion neural networks provide a means of efficient and compact expression in machine learning applications and have been used in solving multiple time-series and traffic forecasting problems.[2] [3]

See also

References

Notes and References

  1. Raoul E. Cawagas, et al. (2009). "THE BASIC SUBALGEBRA STRUCTURE OF THE CAYLEY-DICKSON ALGEBRA OF DIMENSION 32 (TRIGINTADUONIONS)".
  2. Saoud. Lyes Saad. Al-Marzouqi. Hasan. 2020. Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm. IEEE Access. 8. 144823–144838. 10.1109/ACCESS.2020.3014690. 2169-3536. free.
  3. Kopp . Michael . Kreil . David . Neun . Moritz . Jonietz . David . Martin . Henry . Herruzo . Pedro . Gruca . Aleksandra . Soleymani . Ali . Wu . Fanyou . Liu . Yang . Xu . Jingwei . 2021-08-07 . Traffic4cast at NeurIPS 2020 – yet more on the unreasonable effectiveness of gridded geo-spatial processes . NeurIPS 2020 Competition and Demonstration Track . en . PMLR . 325–343.