In mathematics, the secondary polynomials
\{qn(x)\}
\{pn(x)\}
\rho(x)
qn(x)=\intR
pn(t)-pn(x) | |
t-x |
\rho(t)dt.
To see that the functions
qn(x)
3. | |
p | |
0(x)=x |
\begin{align}q0(x)&{} =\intR
t3-x3 | |
t-x |
\rho(t)dt\\ &{} =\intR
(t-x)(t2+tx+x2) | |
t-x |
\rho(t)dt\\ &{} =\intR(t2+tx+x2)\rho(t)dt\\ &{} =\intRt2\rho(t)dt +x\intRt\rho(t)dt +
2\int | |
x | |
R |
\rho(t)dt \end{align}
which is a polynomial
x
t
\rho