In physics, the screened Poisson equation is a Poisson equation, which arises in (for example) the Klein–Gordon equation, electric field screening in plasmas, and nonlocal granular fluidity[1] in granular flow.
The equation is
where
\Delta
In the homogeneous case (f=0), the screened Poisson equation is the same as the time-independent Klein–Gordon equation. In the inhomogeneous case, the screened Poisson equation is very similar to the inhomogeneous Helmholtz equation, the only difference being the sign within the brackets.
In electric-field screening, screened Poisson equation for the electric potential
\phi(r)
where
-1 | |
k | |
0 |
\rho\rm(r)
\epsilon0
Without loss of generality, we will take λ to be non-negative. When λ is zero, the equation reduces to Poisson's equation. Therefore, when λ is very small, the solution approaches that of the unscreened Poisson equation, which, in dimension
n=3
On the other hand, when λ is extremely large, u approaches the value f/λ2, which goes to zero as λ goes to infinity. As we shall see, the solution for intermediate values of λ behaves as a superposition of screened (or damped) 1/r functions, with λ behaving as the strength of the screening.
The screened Poisson equation can be solved for general f using the method of Green's functions. The Green's function G is defined by
where δ3 is a delta function with unit mass concentrated at the origin of R3.
Assuming u and its derivatives vanish at large r, we may perform a continuous Fourier transform in spatial coordinates:
where the integral is taken over all space. It is then straightforward to show that
The Green's function in r is therefore given by the inverse Fourier transform,
kr
This may be evaluated using contour integration. The result is:
The solution to the full problem is then given by
As stated above, this is a superposition of screened 1/r functions, weighted by the source function f and with λ acting as the strength of the screening. The screened 1/r function is often encountered in physics as a screened Coulomb potential, also called a "Yukawa potential".
In two dimensions:In the case of a magnetized plasma, the screened Poisson equation is quasi-2D:with
\Delta\perp=\nabla ⋅ \nabla\perp
\nabla | ||||
|
⋅ \nabla
B
\rho
kr
The Green's functions in both 2D and 3D are identical to the probability density function of the multivariate Laplace distribution for two and three dimensions respectively.
The homogeneous case, studied in the context of differential geometry, involving Einstein warped product manifolds, explores cases where the warped function satisfies the homogeneous version of the screened Poisson equation. Under specific conditions, the manifold size, Ricci curvature, and screening parameter are interconnected via a quadratic relationship[2] .