In domain theory, a branch of mathematics and computer science, a Scott information system is a primitive kind of logical deductive system often used as an alternative way of presenting Scott domains.
A Scott information system, A, is an ordered triple
(T,Con,\vdash)
Tisasetoftokens(thebasicunitsofinformation)
Con\subseteql{P}f(T)thefinitesubsetsofT
{\vdash}\subseteq(Con\setminus\lbrace\emptyset\rbrace) x T
Ifa\inX\inConthenX\vdasha
IfX\vdashYandY\vdasha,thenX\vdasha
IfX\vdashathenX\cup\{a\}\inCon
\foralla\inT:\{a\}\inCon
IfX\inConandX\prime\subseteqXthenX\prime\inCon.
Here
X\vdashY
\foralla\inY,X\vdasha.
The return value of a partial recursive function, which either returns a natural number or goes into an infinite recursion, can be expressed as a simple Scott information system as follows:
T:=N
Con:=\{\empty\}\cup\{\{n\}\midn\inN\}
X\vdasha\iffa\inX.
That is, the result can either be a natural number, represented by the singleton set
\{n\}
\empty
Of course, the same construction can be carried out with any other set instead of
N
The propositional calculus gives us a very simple Scott information system as follows:
T:=\{\phi\mid\phiissatisfiable\}
Con:=\{X\inl{P}f(T)\midXisconsistent\}
X\vdasha\iffX\vdashainthepropositionalcalculus.
Let D be a Scott domain. Then we may define an information system as follows
T:=D0
D
Con:=\{X\inl{P}f(T)\midXhasanupperbound\}
X\vdashd\iffd\sqsubseteqsqcupX.
Let
l{I}
Given an information system,
A=(T,Con,\vdash)
x\subseteqT
IfX\subseteqfxthenX\inCon
IfX\vdashaandX\subseteqfxthena\inx.
Let
l{D}(A)
l{D}(A)
l{D}(l{I}(D))\congD
l{I}(l{D}(A))\congA