Scott W. Lowe Explained

Birth Date:1963
Birth Place:Racine, Wisconsin, United States
Fields:Cancer Genetics
Workplaces:
Alma Mater:
    Known For:p53

    Scott William Lowe (born October 4, 1963) is Chair of the Cancer Biology and Genetics Program in the Sloan Kettering Institute at Memorial Sloan Kettering Cancer Center. He is recognized for his research on the tumor suppressor gene, p53, which is mutated in nearly half of cancers.

    Early life and education

    Lowe was born in 1963 in Racine, Wisconsin. He enrolled at the University of Wisconsin-Madison in chemical engineering in 1982 before changing his major to biology. He worked for two years after graduation as a lab technician in a hypercholesterolemia lab.[1] Lowe entered the Massachusetts Institute of Technology (MIT) with an interest in oncogene cooperation in carcinogenesis,[2] and went on to earn his PhD studying the role of p53 in cancer development.[3] He stayed at MIT as a postdoctoral fellow with David Housman and Tyler Jacks.

    Career

    While at MIT, he showed that the tumor suppressor p53 is required for the cell death program that occurs in response to cytotoxic agents such as ionizing radiation and DNA-damaging chemotherapies.[4] He moved from MIT to Cold Spring Harbor Laboratory, starting his own laboratory as a Cold Spring Harbor Laboratory Fellow in 1995 and continuing his work on p53. A key outcome of this research was the discovery of a process known as oncogene-induced senescence, which is now a well-established tumor suppressive program. His laboratory's findings related to the p53 gene mutation status and responsiveness of a tumor to chemotherapy was among the pieces of evidence that ushered in the era of personalized cancer medicine. He eventually became Deputy Director of the CSHL Cancer Center. Much of his work has focused on the biological action of tumor suppressor genes, and the consequences of their mutation.[5] In collaboration with Gregory Hannon and Stephen Elledge, he has made extensive use of RNA interference to study the roles of tumor suppressor genes. He is also known for using genome-editing tools such as CRISPR to create valuable mouse models of different cancers.[6] [7] He moved to Memorial Sloan Kettering in 2011 to lead the Cancer Biology and Genetics Program in the Sloan Kettering Institute, where he discovered mechanisms whereby senescence inducing therapies promote cancer cell immune surveillance.[8] [9] In 2015, Lowe continued his use of RNAi to study the tumor suppressor APC in colorectal cancer.[6] He has been an HHMI Investigator since 2005.[10] In 2017, Dr. Lowe was elected to the United States National Academy of Sciences. In 2019, Dr. Lowe was elected to the National Academy of Medicine.[11]

    Awards

    Works

    Notes and References

    1. Web site: Biography 38: Scott William Lowe (1963 -). DNA Learning Center. Cold Spring Harbor Laboratory. 30 May 2019.
    2. Ravindran. Sandeep. 23 January 2018. Profile of Scott W. Lowe. Proceedings of the National Academy of Sciences of the United States of America. 115. 4. 630 - 632. 5789967. 10.1073/pnas.1721809115. 29339467. 2018PNAS..115..630R . free.
    3. Web site: Dr Scott W Lowe. at the limits: Leading Medical Education. The Lancet. 30 May 2019.
    4. Web site: Biography 38: Scott William Lowe (1963 -). DNA Learning Center. Cold Spring Harbor Laboratory. 30 May 2019.
    5. Web site: Biologist Scott Lowe Joins Memorial Sloan Kettering. 1 October 2011. Memorial Sloan Kettering Cancer Center. Blog. 30 May 2019.
    6. Ravindran. Sandeep. 2018-01-16. Profile of Scott W. Lowe. Proceedings of the National Academy of Sciences. en. 115. 4. 630–632. 10.1073/pnas.1721809115. 29339467. 5789967. 2018PNAS..115..630R . 0027-8424. free.
    7. Chen. Chi-Chao. Li. Bo. Millman. Scott E.. Chen. Cynthia. Li. Xiang. Morris. John P.. Mayle. Allison. Ho. Yu-Jui. Loizou. Evangelia. Liu. Hui. Qin. Weige. 2020-01-13. Vitamin B6 Addiction in Acute Myeloid Leukemia. Cancer Cell. en. 37. 1. 71–84.e7. 10.1016/j.ccell.2019.12.002. 1535-6108. 31935373. 7197326.
    8. Ruscetti. Marcus. Morris. John P.. Mezzadra. Riccardo. Russell. James. Leibold. Josef. Romesser. Paul B.. Simon. Janelle. Kulick. Amanda. Ho. Yu-Jui. Fennell. Myles. Li. Jinyang. 2020-04-16. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 181. 2. 424–441.e21. 10.1016/j.cell.2020.03.008. 1097-4172. 7278897. 32234521.
    9. Web site: 2019-01-14. Could Cytostatic Drugs Unleash Antitumor Immunity in Lung Cancer?. 2020-10-12. Cancer Therapy Advisor. en-US.
    10. Web site: Scott W. Lowe. 2020-10-12. HHMI.org. en.
    11. Web site: National Academy of Medicine Elects 100 New Members. 21 October 2019.
    12. Web site: 2005 Paul Marks Prize.