Schwinger parametrization explained

Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops.

Using the well-known observation that

1=
An
1
(n-1)!
infty
\int
0

duun-1e-uA,

Julian Schwinger noticed that one may simplify the integral:

\int

dp=
A(p)n
1
\Gamma(n)

\intdp

infty
\int
0

duun-1e-uA(p)=

1
\Gamma(n)
infty
\int
0

duun-1\intdpe-uA(p),

for Re(n)>0.

Another version of Schwinger parametrization is:

i
A+i\epsilon
infty
=\int
0

dueiu(A+i\epsilon),

which is convergent as long as

\epsilon>0

and

A\inR

.[1] It is easy to generalize this identity to n denominators.

See also

Notes and References

  1. Book: Schwartz, M. D.. Quantum Field Theory and the Standard Model. Cambridge University Press. 2014. 33. 9. 705. 9781107034730.