In mathematics, the Schwarz lantern is a polyhedral approximation to a cylinder, used as a pathological example of the difficulty of defining the area of a smooth (curved) surface as the limit of the areas of polyhedra. It is formed by stacked rings of isosceles triangles, arranged within each ring in the same pattern as an antiprism. The resulting shape can be folded from paper, and is named after mathematician Hermann Schwarz and for its resemblance to a cylindrical paper lantern. It is also known as Schwarz's boot, Schwarz's polyhedron, or the Chinese lantern.
As Schwarz showed, for the surface area of a polyhedron to converge to the surface area of a curved surface, it is not sufficient to simply increase the number of rings and the number of isosceles triangles per ring. Depending on the relation of the number of rings to the number of triangles per ring, the area of the lantern can converge to the area of the cylinder, to a limit arbitrarily larger than the area of the cylinder, or to infinity—in other words, the area can diverge. The Schwarz lantern demonstrates that sampling a curved surface by close-together points and connecting them by small triangles is inadequate to ensure an accurate approximation of area, in contrast to the accurate approximation of arc length by inscribed polygonal chains.
The phenomenon that closely sampled points can lead to inaccurate approximations of area has been called the Schwarz paradox. The Schwarz lantern is an instructive example in calculus and highlights the need for care when choosing a triangulation for applications in computer graphics and the finite element method.
Archimedes approximated the circumference of circles by the lengths of inscribed or circumscribed regular polygons. More generally, the length of any smooth or rectifiable curve can be defined as the supremum of the lengths of polygonal chains inscribed in them. However, for this to work correctly, the vertices of the polygonal chains must lie on the given curve, rather than merely near it. Otherwise, in a counterexample sometimes known as the staircase paradox, polygonal chains of vertical and horizontal line segments of total length
2
\sqrt2
German mathematician Hermann Schwarz (1843–1921) devised his construction in the late 19th century as a counterexample to the erroneous definition in J. A. Serret's 1868 book Latin: Cours de calcul differentiel et integral, which incorrectly states that:
Independently of Schwarz, Giuseppe Peano found the same counterexample. At the time, Peano was a student of Angelo Genocchi, who, from communication with Schwarz, already knew about the difficulty of defining surface area. Genocchi informed Charles Hermite, who had been using Serret's erroneous definition in his course. Hermite asked Schwarz for details, revised his course, and published the example in the second edition of his lecture notes (1883). The original note from Schwarz to Hermite was not published until the second edition of Schwarz's collected works in 1890.
An instructive example of the value of careful definitions in calculus, the Schwarz lantern also highlights the need for care in choosing a triangulation for applications in computer graphics and for the finite element method for scientific and engineering simulations. In computer graphics, scenes are often described by triangulated surfaces, and accurate rendering of the illumination of those surfaces depends on the direction of the surface normals. A poor choice of triangulation, as in the Schwarz lantern, can produce an accordion-like surface whose normals are far from the normals of the approximated surface, and the closely-spaced sharp folds of this surface can also cause problems with aliasing.
The failure of Schwarz lanterns to converge to the cylinder's area only happens when they include highly obtuse triangles, with angles close to 180°. In restricted classes of Schwarz lanterns using angles bounded away from 180°, the area converges to the same area as the cylinder as the number of triangles grows to infinity. The finite element method, in its most basic form, approximates a smooth function (often, the solution to a physical simulation problem in science or engineering) by a piecewise-linear function on a triangulation. The Schwarz lantern's example shows that, even for simple functions such as the height of a cylinder above a plane through its axis, and even when the function values are calculated accurately at the triangulation vertices, a triangulation with angles close to 180° can produce highly inaccurate simulation results. This motivates mesh generation methods for which all angles are bounded away from 180°, such as nonobtuse meshes.
The discrete polyhedral approximation considered by Schwarz can be described by two parameters:
m
n
m=1
m
m
m
m+1
m-1
n
\pi/n
Ignoring top and bottom vertices, each vertex touches two apex angles and four base angles of congruent isosceles triangles, just as it would in a tessellation of the plane by triangles of the same shape. As a consequence, the Schwarz lantern can be folded from a flat piece of paper, with this tessellation as its crease pattern. This crease pattern has been called the Yoshimura pattern, after the work of Y. Yoshimura on the Yoshimura buckling pattern of cylindrical surfaces under axial compression, which can be similar in shape to the Schwarz lantern.
The area of the Schwarz lantern, for any cylinder and any particular choice of the parameters
m
r
\ell
m
n
2n
n
2mn
The Schwarz lanterns, for large values of both parameters, converge uniformly to the cylinder that they approximate. However, because there are two free parameters
m
n
m
n
m
n
On the other hand, reversing the ordering of the limits givesIn this case, for a fixed choice as
m
2n
It is also possible to fix a functional relation between
m
m=cn
n
m=cn3
m=cn2
n=2