In mathematical analysis, the Schur test, named after German mathematician Issai Schur, is a bound on the
L2\toL2
Here is one version.[1] Let
X,Y
Rn
T
K(x,y)
x\inX
y\inY
Tf(x)=\intYK(x,y)f(y)dy.
If there exist real functions
p(x)>0
q(y)>0
\alpha,\beta>0
(1) \intYK(x,y)q(y)dy\le\alphap(x)
x
(2) \intXp(x)K(x,y)dx\le\betaq(y)
for almost all
y
T
T:L2\toL2
\Vert
T\Vert | |
L2\toL2 |
\le\sqrt{\alpha\beta}.
Such functions
p(x)
q(y)
In the original version,
T
\alpha=\beta=1
A common usage of the Schur test is to take
p(x)=q(y)=1.
\Vert
2 | |
T\Vert | |
L2\toL2 |
\le \supx\in\intY|K(x,y)|dy ⋅ \supy\in\intX|K(x,y)|dx.
This inequality is valid no matter whether the Schwartz kernel
K(x,y)
A similar statement about
Lp\toLq
if
\supx(\int
rdy) | |
Y|K(x,y)| |
1/r+\supy(\int
rdx) | |
X|K(x,y)| |
1/r\leC,
where
r
1 | ||||||
|
1\lep\leq\leinfty
Tf(x)=\intYK(x,y)f(y)dy
T:Lp(Y)\toLq(X)
\Vert
T\Vert | |
Lp\toLq |
\leC.
Using the Cauchy–Schwarz inequality and inequality (1), we get:
\begin{align}
2=\left|\int | |
|Tf(x)| | |
Y |
K(x,y)f(y)dy\right|2 &\le\left(\intYK(x,y)q(y)dy\right)\left(\intY
K(x,y)f(y)2 | |
q(y) |
dy\right)\\ &\le\alphap(x)\intY
K(x,y)f(y)2 | |
q(y) |
dy. \end{align}
Integrating the above relation in
x
\VertT
2 | |
f\Vert | |
L2 |
\le\alpha\intY\left(\intXp(x)K(x,y)dx\right)
f(y)2 | |
q(y) |
dy \le\alpha\beta\intYf(y)2dy=\alpha\beta\Vert
2. | |
f\Vert | |
L2 |
It follows that
\VertT
f\Vert | |
L2 |
\le\sqrt{\alpha\beta}\Vert
f\Vert | |
L2 |
f\inL2(Y)