Schreibersite Explained

Schreibersite
Category:Phosphide mineral
Meteorite mineral
Imasymbol:Scb[1]
Strunz:1.BD.05
Dana:01.01.21.02
System:Tetragonal
Class:Disphenoidal
H-M symbol:
Symmetry:I
Color:Silver-white to tin-white, tarnishes brass-yellow or brown
Habit:Rarely in crystals, hoppered, plates, tablets, rods or needles
Cleavage: perfect, indistinct, indistinct
Tenacity:Very brittle
Mohs:6.5–7
Luster:Brilliant metallic
Streak:Dark gray
Diaphaneity:Opaque
Gravity:7.0–7.3
Opticalprop:Uniaxial
References:[2] [3]

Schreibersite is generally a rare iron nickel phosphide mineral,, though common in iron-nickel meteorites. It has been found on Disko Island in Greenland[4] and Illinois.[5] [6]

Another name used for the mineral is rhabdite. It forms tetragonal crystals with perfect 001 cleavage. Its color ranges from bronze to brass yellow to silver white. It has a density of 7.5 and a hardness of 6.5 – 7. It is opaque with a metallic luster and a dark gray streak. It was named after the Austrian scientist Carl Franz Anton Ritter von Schreibers (1775–1852), who was one of the first to describe it from iron meteorites.[7]

Schreibersite is reported from the Magura Meteorite, Arva-(present name – Orava), Slovak Republic; the Sikhote-Alin Meteorite in eastern Russia; the São Julião de Moreira Meteorite, Viana do Castelo, Portugal; the Gebel Kamil (meteorite) in Egypt; and numerous other locations including the Moon.[8]

In 2007, researchers reported that schreibersite and other meteoric phosphorus bearing minerals may be the ultimate source for the phosphorus that is so important for life on Earth.[9] [10] [11] In 2013, researchers reported that they had successfully produced pyrophosphite, a possible precursor to pyrophosphate, the molecule associated with ATP, a co-enzyme central to energy metabolism in all life on Earth. Their experiment consisted of subjecting a sample of schreibersite to a warm, acidic environment typically found in association with volcanic activity, activity that was far more common on the primordial Earth. They hypothesized that their experiment might represent what they termed "chemical life", a stage of evolution which may have led to the emergence of fully biological life as exists today.[12]

Lightning strikes may have provided an alternative source of reduced phosphorus species for the synthesis of early biomolecules.[13] [5] [6]

See also

Notes and References

  1. Warr. L.N.. 2021. IMA–CNMNC approved mineral symbols. Mineralogical Magazine. 85. 3 . 291–320. 10.1180/mgm.2021.43 . 2021MinM...85..291W . 235729616 . free.
  2. http://www.mindat.org/min-3582.html Schreibersite
  3. Book: Anthony, John W. . Bideaux, Richard A. . Bladh, Kenneth W. . Nichols, Monte C. . Handbook of Mineralogy. Mineralogical Society of America. Chantilly, VA, US. http://rruff.geo.arizona.edu/doclib/hom/schreibersite.pdf. Schreibersite. 978-0962209727 . IV (Arsenates, Phosphates, Vanadates). 2000.
  4. http://www.eurekalert.org/pub_releases/2013-04/uol-pbp040413.php "Power behind primordial soup discovered"
  5. Hess . Benjamin L. . Piazolo . Sandra . Harvey . Jason . 2021-03-16 . Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth . Nature Communications . 12 . 1 . 1535 . en . 10.1038/s41467-021-21849-2 . 7966383 . 33727565. 2021NatCo..12.1535H .
  6. Web site: Temming . Maria . 2021-04-10 . Phosphorus for Earth's earliest life may have been forged by lightning . 2021-04-02 . Science News.
  7. http://webmineral.com/data/Schreibersite.shtml Schreibersite
  8. Book: Hunter R. H. . Taylor L. A. . 1982. Lunar and Planetary Science Conference, 12th, Houston, TX, March 16–20, 1981, Proceedings. Section 1. (A82-31677 15–91). New York and Oxford. Pergamon Press. 253–259. Rust and schreibersite in Apollo 16 highland rocks – Manifestations of volatile-element mobility . 1982LPSC...12..253H.
  9. http://www.innovations-report.com/html/reports/earth_sciences/report-32724.html Report of U of A Extra-terrestrial Phosphorus
  10. Book: http://books.nap.edu/openbook.php?record_id=11919&page=56 . 56. The Limits of Organic Life in Planetary Systems . 2007. 5.2.3. The Origin of Phosphorus. 978-0309104845. National Academies Press. 10.17226/11919.
  11. Sasso, Anne (January 3, 2005) Life's Fifth Element Came From Meteors. Discover Magazine.
  12. 10.1016/j.gca.2012.12.043. Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochimica et Cosmochimica Acta. 109. 90–112. 2013. Bryant . D. E. . Greenfield . D. . Walshaw . R. D. . Johnson . B. R. G. . Herschy . B. . Smith . C. . Pasek . M. A. . Telford . R. . Scowen . I. . Munshi . T. . Edwards . H. G. M. . Cousins . C. R. . Crawford . I. A. . Kee . T. P. . 2013GeCoA.109...90B.
  13. Pasek . Matthew . Block . Kristin . 2009-07-13 . Lightning-induced reduction of phosphorus oxidation state . 2021-04-02 . Nature Geoscience . 2 . 8 . 553–556 . en . 10.1038/ngeo580. 2009NatGe...2..553P .