Schild's ladder explained

In the theory of general relativity, and differential geometry more generally, Schild's ladder is a first-order method for approximating parallel transport of a vector along a curve using only affinely parametrized geodesics. The method is named for Alfred Schild, who introduced the method during lectures at Princeton University.

Construction

The idea is to identify a tangent vector x at a point

A0

with a geodesic segment of unit length

A0X0

, and to construct an approximate parallelogram with approximately parallel sides

A0X0

and

A1X1

as an approximation of the Levi-Civita parallelogramoid; the new segment

A1X1

thus corresponds to an approximately parallel translated tangent vector at

A1.

Formally, consider a curve γ through a point A0 in a Riemannian manifold M, and let x be a tangent vector at A0. Then x can be identified with a geodesic segment A0X0 via the exponential map. This geodesic σ satisfies

\sigma(0)=A0

\sigma'(0)=x.

The steps of the Schild's ladder construction are:

A0X0

has unit length.

Approximation

This is a discrete approximation of the continuous process of parallel transport. If the ambient space is flat, this is exactly parallel transport, and the steps define parallelograms, which agree with the Levi-Civita parallelogramoid.

In a curved space, the error is given by holonomy around the triangle

A1A0X0,

which is equal to the integral of the curvature over the interior of the triangle, by the Ambrose-Singer theorem; this is a form of Green's theorem (integral around a curve related to integral over interior), and in the case of Levi-Civita connections on surfaces, of Gauss–Bonnet theorem.

Notes

  1. Schild's ladder requires not only geodesics but also relative distance along geodesics. Relative distance may be provided by affine parametrization of geodesics, from which the required midpoints may be determined.
  2. The parallel transport which is constructed by Schild's ladder is necessarily torsion-free.
  3. A Riemannian metric is not required to generate the geodesics. But if the geodesics are generated from a Riemannian metric, the parallel transport which is constructed in the limit by Schild's ladder is the same as the Levi-Civita connection because this connection is defined to be torsion-free.

References