Arnold Schönhage Explained

Honorific Prefix:Professor
Arnold Schönhage
Birth Date:December 1, 1934
Birth Place:Bad Salzuflen, Germany
Nationality:German
Fields:Mathematics
Workplaces:University of Konstanz, University of Tübingen, Rheinische Friedrich-Wilhelms-Universität, Bonn
Alma Mater:University of Cologne
Known For:Schönhage–Strassen algorithm, Odlyzko–Schönhage algorithm, Schönhage's Storage Modification Machine (SMM) model. Splitting circle method.

Arnold Schönhage (born 1 December 1934 in Lockhausen, now Bad Salzuflen) is a German mathematician and computer scientist.

Schönhage was professor at the Rheinische Friedrich-Wilhelms-Universität, Bonn,[1] and also in Tübingen and Konstanz.[2]

Together with Volker Strassen, he developed the Schönhage–Strassen algorithm for the multiplication of large numbers[3] that has a runtime of O(N log N log log N). For many years, this was the fastest way to multiply large integers, although Schönhage and Strassen predicted that an algorithm with a run-time of N(logN) should exist. In 2019, Joris van der Hoeven and David Harvey finally developed an algorithm with this runtime, proving that Schönhage's and Strassen's prediction had been correct.[4]

Schönhage designed and implemented together with Andreas F. W. Grotefeld and Ekkehart Vetter a multitape Turing machine, called TP, in software. The machine is programmed in TPAL, an assembler language. They implemented numerous numerical algorithms, including the Schönhage–Strassen algorithm, on this machine.

The Odlyzko–Schönhage algorithm[5] from 1988 is regularly used in research on the Riemann zeta function.

External links

Notes and References

  1. Web site: Luerweg . Frank . December 21, 2004 . Weltrekord-Rechenmethode kommt zu späten Ehren . 2023-10-21 . Informationsdienst Wissenschaft.
  2. Web site: Arnold Schönhage . 2023-10-21 . The Mathematics Genealogy Project . North Dakota State University.
  3. Web site: Fischer . Lars . April 11, 2019 . Mathematik: Die schnellste Art zu multiplizieren . 2023-10-21 . Spektrum der Wissenschaft . de.
  4. Klarreich . Erica . 2019-12-20 . Multiplication hits the speed limit . Communications of the ACM . en . 63 . 1 . 11–13 . 10.1145/3371387 . 209450552 . 0001-0782.
  5. Odlyzko . A. M. . Schonhage . A. . Fast Algorithms for Multiple Evaluations of the Riemann Zeta Function . Transactions of the American Mathematical Society . 309 . 2 . 1988 . 10.2307/2000939 . 797-809.