Scanning probe lithography explained

Scanning probe lithography[1] (SPL) describes a set of nanolithographic methods to pattern material on the nanoscale using scanning probes. It is a direct-write, mask-less approach which bypasses the diffraction limit and can reach resolutions below 10 nm. It is considered an alternative lithographic technology often used in academic and research environments. The term scanning probe lithography was coined after the first patterning experiments with scanning probe microscopes (SPM) in the late 1980s.

Classification

The different approaches towards SPL can be classified by their goal to either add or remove material, by the general nature of the process either chemical or physical, or according to the driving mechanisms of the probe-surface interaction used in the patterning process: mechanical, thermal, diffusive and electrical.

Overview

Mechanical/thermo-mechanical

Mechanical scanning probe lithography (m-SPL) is a nanomachining or nano-scratching[2] top-down approach without the application of heat.[3] Thermo-mechanical SPL applies heat together with a mechanical force, e.g. indenting of polymers in the Millipede memory.

Thermal

See main article: Thermal scanning probe lithography. Thermal scanning probe lithography (t-SPL) uses a heatable scanning probe in order to efficiently remove material from a surface without the application of significant mechanical forces. The patterning depth can be controlled to create high-resolution 3D structures.[4] [5]

Thermo-chemical

See main article: Thermochemical nanolithography. Thermochemical scanning probe lithography (tc-SPL) or thermochemical nanolithography (TCNL) employs the scanning probe tips to induce thermally activated chemical reactions to change the chemical functionality or the phase of surfaces. Such thermally activated reactions have been shown in proteins,[6] organic semiconductors,[7] electroluminescent conjugated polymers,[8] and nanoribbon resistors.[9] Furthermore, deprotection of functional groups[10] (sometimes involving a temperature gradients[11]), reduction of oxides,[12] and the crystallization of piezoelectric/ferroelectric ceramics[13] has been demonstrated.

Dip-pen/thermal dip-pen

See main article: Dip-pen nanolithography. Dip-pen scanning probe lithography (dp-SPL) or dip-pen nanolithography (DPN) is a scanning probe lithography technique based on diffusion, where the tip is employed to create patterns on a range of substances by deposition of a variety of liquid inks.[14] [15] [16] Thermal dip-pen scanning probe lithography or thermal dip-pen nanolithography (TDPN) extends the usable inks to solids, which can be deposited in their liquid form when the probes are pre-heated.[17] [18] [19]

Oxidation

See main article: Local oxidation nanolithography. Oxidation scanning probe lithography (o-SPL), also called local oxidation nanolithography (LON), scanning probe oxidation, nano-oxidation, local anodic oxidation, AFM oxidation lithography is based on the spatial confinement of an oxidation reaction.[20] [21]

Bias induced

Bias-induced scanning probe lithography (b-SPL) uses the high electrical fields created at the apex of a probe tip when voltages are applied between tip and sample to facilitate and confining a variety of chemical reactions to decompose gases[22] or liquids[23] [24] in order to locally deposit and grow materials on surfaces.

Current induced

In current induced scanning probe lithography (c-SPL) in addition to the high electrical fields of b-SPL, also a focused electron current which emanates from the SPM tip is used to create nanopatterns, e.g. in polymers[25] and molecular glasses.[26]

Magnetic

Various scanning probe techniques have been developed to write magnetization patterns into ferromagnetic structures which are often described as magnetic SPL techniques. Thermally-assisted magnetic scanning probe lithography (tam-SPL)[27] operates by employing a heatable scanning probe to locally heat and cool regions of an exchange-biased ferromagnetic layer in the presence of an external magnetic field. This causes a shift in the hysteresis loop of exposed regions, pinning the magnetization in a different orientation compared to unexposed regions. The pinned regions become stable even in the presence of external fields after cooling, allowing arbitrary nanopatterns to be written into the magnetization of the ferromagnetic layer.

In arrays of interacting ferromagnetic nano-islands such as artificial spin ice, scanning probe techniques have been used to write arbitrary magnetic patterns by locally reversing the magnetization of individual islands. Topological defect-driven magnetic writing (TMW)[28] uses the dipolar field of a magnetized scanning probe to induce topological defects in the magnetization field of individual ferromagnetic islands. These topological defects interact with the island edges and annihilate, leaving the magnetization reversed. Another way of writing such magnetic patterns is field-assisted magnetic force microscopy patterning,[29] where an external magnetic field a little below the switching field of the nano-islands is applied and a magnetized scanning probe is used to locally raise the field strength above that required to reverse the magnetization of selected islands.

In magnetic systems where interfacial Dzyaloshinskii–Moriya interactions stabilize magnetic textures known as magnetic skyrmions, scanning-probe magnetic nanolithography has been employed for the direct writing of skyrmions and skyrmion lattices.[30] [31]

Comparison to other lithographic techniques

Being a serial technology, SPL is inherently slower than e.g. photolithography or nanoimprint lithography, while parallelization as required for mass-fabrication is considered a large systems engineering effort (see also Millipede memory). As for resolution, SPL methods bypass the optical diffraction limit due to their use of scanning probes compared with photolithographic methods. Some probes have integrated in-situ metrology capabilities, allowing for feedback control during the write process.[32] SPL works under ambient atmospheric conditions, without the need for ultra high vacuum (UHV), unlike e-beam or EUV lithography.

Notes and References

  1. Advanced scanning probe lithography. Nature Nanotechnology. August 2014. 1748-3387. 577–587. 9. 8. 10.1038/nnano.2014.157. Ricardo. Garcia. Armin W.. Knoll. Elisa. Riedo . Elisa Riedo . 25091447. 1505.01260 . 2014NatNa...9..577G . 205450948.
  2. Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy . Small. 10.1002/smll.200901947. 20166110. 6. 6. 724–728. 2010. Yan. Yongda. Hu. Zhenjiang. Zhao. Xueshen. Sun. Tao. Dong. Shen. Li. Xiaodong. free.
  3. Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires. The Journal of Physical Chemistry C. June 17, 2010. 1932-7447. 10359–10364. 114. 23. 10.1021/jp1014725. Hsiang-An. Chen. Hsin-Yu. Lin. Heh-Nan. Lin.
  4. Direct three-dimensional nanoscale thermal lithography at high speeds using heated atomic-force microscope cantilevers. 2007. 65171L–65171L–6. 6517. 10.1117/12.713374. Yueming. Hua. Shubham. Saxena. Jung C.. Lee. William P.. King. Clifford L.. Henderson. Michael J. Lercel. Emerging Lithographic Technologies XI. 2007SPIE.6517E..1LH. 120189827.
  5. Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes. Science. 2010. 0036-8075. 20413457. 732–735. 328. 5979. 10.1126/science.1187851. David. Pires. James L.. Hedrick. Anuja De. Silva. Jane. Frommer. Bernd. Gotsmann. Heiko. Wolf. Michel. Despont. Urs. Duerig. Armin W.. Knoll. 2010Sci...328..732P . 9975977. free.
  6. Large-scale Nanopatterning of Single Proteins used as Carriers of Magnetic Nanoparticles . Advanced Materials. 10.1002/adma.200902568. 20217754. 22. 5. 588–591. 2010. Martínez. Ramsés V. Martínez. Javier. Chiesa. Marco. Garcia. Ricardo. Coronado. Eugenio. Pinilla-Cienfuegos. Elena. Tatay. Sergio. 2010AdM....22..588M . 10261/45215. 43146735 . free.
  7. Thermochemical nanopatterning of organic semiconductors. Nature Nanotechnology. October 2009. 1748-3387. 664–668. 4. 10. 10.1038/nnano.2009.254. Oliver. Fenwick. Laurent. Bozec. Dan. Credgington. Azzedine. Hammiche. Giovanni Mattia. Lazzerini. Yaron R.. Silberberg. Franco. Cacialli. 19809458. 2009NatNa...4..664F .
  8. Direct writing and characterization of poly(p-phenylene vinylene) nanostructures. Applied Physics Letters. 2009-12-07. 0003-6951. 233108. 95. 23. 10.1063/1.3271178. Debin. Wang. Suenne. Kim. William D. Underwood. Ii. Anthony J.. Giordano. Clifford L.. Henderson. Zhenting. Dai. William P.. King. Seth R.. Marder. Elisa. Riedo. 2009ApPhL..95w3108W . 1853/46878 . free.
  9. On-Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography . Advanced Materials. 10.1002/adma.201202877. 23138983. 25. 4. 552–558. 2013. Shaw. Joseph E. Stavrinou. Paul N. Anthopoulos. Thomas D. 2013AdM....25..552S . 10044/1/19476. 205247133 . free.
  10. Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects . Advanced Functional Materials. 10.1002/adfm.200901057. 19. 23. 3696–3702. 2009. Wang. Debin. Kodali. Vamsi K. Underwood Ii. William D. Jarvholm. Jonas E. Okada. Takashi. Jones. Simon C. Rumi. Mariacristina. Dai. Zhenting. King. William P. Marder. Seth R. Curtis. Jennifer E. Riedo. Elisa. 96263209 .
  11. Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography. Langmuir. July 9, 2013. 0743-7463. 8675–8682. 29. 27. 10.1021/la400996w. 23751047. Keith M.. Carroll. Anthony J.. Giordano. Debin. Wang. Vamsi K.. Kodali. Jan. Scrimgeour. William P.. King. Seth R.. Marder. Elisa. Riedo. Jennifer E.. Curtis.
  12. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics. Science. 11 Jun 2010. 0036-8075. 20538944. 1373–1376. 328. 5984. 10.1126/science.1188119. Zhongqing. Wei. Debin. Wang. Suenne. Kim. Soo-Young. Kim. Yike. Hu. Michael K.. Yakes. Arnaldo R.. Laracuente. Zhenting. Dai. Seth R.. Marder. 2010Sci...328.1373W . 10.1.1.635.6671. 9672782.
  13. Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates . Advanced Materials. 23. 33. 3786–90. 10.1002/adma.201101991. 21766356. 2011. Kim. Suenne. Bastani. Yaser. Lu. Haidong. King. William P. Marder. Seth. Kenneth Sandhage . Sandhage. Kenneth H. Gruverman. Alexei. Riedo. Elisa. Bassiri-Gharb. Nazanin. 205241466 .
  14. Deposition of Organic Material by the Tip of a Scanning Force Microscope. Langmuir. April 1, 1995. 0743-7463. 1061–1064. 11. 4. 10.1021/la00004a004. Manfred. Jaschke. Hans-Juergen. Butt.
  15. The Evolution of Dip-Pen Nanolithography . Angewandte Chemie International Edition. 10.1002/anie.200300608. 14694469. 43. 1. 30–45. 2004. Ginger. David S. Zhang. Hua. Mirkin. Chad A. 10.1.1.462.6653.
  16. "Dip-Pen" Nanolithography. Science. 1999-01-29. 0036-8075. 9924019. 661–663. 283. 5402. 10.1126/science.283.5402.661. Richard D.. Piner. Jin. Zhu. Feng. Xu. Seunghun. Hong. Chad A.. Mirkin. 27011581 .
  17. Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography. Applied Physics Letters. 2006-01-16. 0003-6951. 033104. 88. 3. 10.1063/1.2164394. B. A.. Nelson. W. P.. King. A. R.. Laracuente. P. E.. Sheehan. L. J.. Whitman. 2006ApPhL..88c3104N .
  18. Chemically Isolated Graphene Nanoribbons Reversibly Formed in Fluorographene Using Polymer Nanowire Masks. Nano Letters. December 14, 2011. 1530-6984. 5461–5464. 11. 12. 10.1021/nl203225w. Woo-Kyung. Lee. Jeremy T.. Robinson. Daniel. Gunlycke. Rory R.. Stine. Cy R.. Tamanaha. William P.. King. Paul E.. Sheehan. 22050117. 2011NanoL..11.5461L.
  19. Maskless Nanoscale Writing of Nanoparticle−Polymer Composites and Nanoparticle Assemblies using Thermal Nanoprobes. Nano Letters. January 13, 2010. 1530-6984. 129–133. 10. 1. 10.1021/nl9030456. Woo Kyung. Lee. Zhenting. Dai. William P.. King. Paul E.. Sheehan. 2010NanoL..10..129L. 20028114.
  20. Modification of hydrogen‐passivated silicon by a scanning tunneling microscope operating in air. Applied Physics Letters. 1990-05-14. 0003-6951. 2001–2003. 56. 20. 10.1063/1.102999. J. A.. Dagata. J.. Schneir. H. H.. Harary. C. J.. Evans. M. T.. Postek. J.. Bennett. 1990ApPhL..56.2001D .
  21. Nano-chemistry and scanning probe nanolithographies - Chemical Society Reviews (RSC Publishing). Chemical Society Reviews. 16 December 2006 . 35 . 1 . 29–38 . 10.1039/B501599P . 2015-05-08 . Garcia . Ricardo . Martinez . Ramses V. . Martinez . Javier . 16365640 . 10261/18736 . free .
  22. Nanopatterning of carbonaceous structures by field-induced carbon dioxide splitting with a force microscope. Applied Physics Letters. 2010-04-05. 0003-6951. 143110. 96. 14. 10.1063/1.3374885. R.. Garcia. N. S.. Losilla. J.. Martínez. R. V.. Martinez. F. J.. Palomares. Y.. Huttel. M.. Calvaresi. F.. Zerbetto. 2010ApPhL..96n3110G . 10261/25613. free.
  23. Patterning Polymeric Structures with 2 nm Resolution at 3 nm Half Pitch in Ambient Conditions. Nano Letters. July 1, 2007. 1530-6984. 1846–1850. 7. 7. 10.1021/nl070328r. R. V.. Martínez. N. S.. Losilla. J.. Martinez. Y.. Huttel. R.. Garcia. 2007NanoL...7.1846M. 17352509.
  24. Suez . Itai . etal . 2007 . High‐Field Scanning Probe Lithography in Hexadecane: Transitioning from Field Induced Oxidation to Solvent Decomposition through Surface Modification . Advanced Materials . 19 . 21. 3570–3573 . 10.1002/adma.200700716 . 2007AdM....19.3570S . 55556149 .
  25. Electrostatic nanolithography in polymers using atomic force microscopy. Nature Materials. July 2003. 1476-1122. 468–472. 2. 7. 10.1038/nmat926. 12819776. Sergei F.. Lyuksyutov. Richard A.. Vaia. Pavel B.. Paramonov. Shane. Juhl. Lynn. Waterhouse. Robert M.. Ralich. Grigori. Sigalov. Erol. Sancaktar. 2003NatMa...2..468L . 17619099.
  26. Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS . 10.1117/1.JMM.12.3.031111. 12. 3 . 031111. 2013JMM&M..12c1111K. 2013. Kaestner. Marcus. Hofer . Manuel . Rangelow . Ivo W . 122125593 .
  27. Albisetti. E.. Petti. D.. Pancaldi. M.. Madami. M.. Tacchi. S.. Curtis. J.. King. W. P.. Papp. A.. Csaba. G.. Porod. W.. Vavassori. P.. Riedo. E.. Bertacco. R.. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nature Nanotechnology. 11. 6. 545–551. 10.1038/nnano.2016.25. 26950242. En. 1748-3395. 2016NatNa..11..545A. 2016. 11311/1004182. free.
  28. Gartside. J. C.. Arroo. D. M.. Burn. D. M.. Bemmer. V. L.. Moskalenko. A.. Cohen. L. F.. Branford. W. R.. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nature Nanotechnology. 13. 1. 53–58. 2017. 10.1038/s41565-017-0002-1. 29158603. en. 1704.07439. 2018NatNa..13...53G. 119338468.
  29. Wang. Yong-Lei. Xiao. Zhi-Li. Snezhko. Alexey. Xu. Jing. Ocola. Leonidas E.. Divan. Ralu. Pearson. John E.. Crabtree. George Crabtree. George W.. Kwok. Wai-Kwong. Rewritable artificial magnetic charge ice. Science. 20 May 2016. 352. 6288. 962–966. 10.1126/science.aad8037. 27199423. en. 0036-8075. 1605.06209. 2016Sci...352..962W. 28077289.
  30. Zhang. Senfu. Zhang. Junwei. Zhang. Qiang. Barton. Craig. Neu. Volker. Zhao. Yuelei. Hou. Zhipeng. Wen. Yan. Gong. Chen. Kasakova. Olga. Wang. Wenhong. Peng. Yong. Garanin. Dmitry A.. Chudnovsky. Eugene M.. Zhang. Xixiang. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field. Applied Physics Letters. 112. 132405. 2018. 13. 10.1063/1.5021172. 2018ApPhL.112m2405Z. 10754/627497. en. free.
  31. Ognev. A. V.. Kolesnikov. A. G.. Kim. Yong Jin. Cha. In Ho. Sadnikov. A. V.. Nikitov. S. A.. Soldatov. I. V.. Talapatra. A.. Mohanty. J.. Mruczkiewicz. M.. Ge. Y.. Kerber. N.. Dittrich. F.. Virnau. P.. Kläui. M.. Kim. Young Keun. Samardak. A. S.. Magnetic Direct-Write Skyrmion Nanolithography. ACS Nano. 14. 11. 14960–14970. 2020. 10.1021/acsnano.0c04748. 33152236. 226270306 . en.
  32. https://register.epo.org/application?number=EP13184651&tab=main