Sauer–Shelah lemma explained
In combinatorial mathematics and extremal set theory, the Sauer–Shelah lemma states that every family of sets with small VC dimension consists of a small number of sets. It is named after Norbert Sauer and Saharon Shelah, who published it independently of each other in 1972. The same result was also published slightly earlier and again independently, by Vladimir Vapnik and Alexey Chervonenkis, after whom the VC dimension is named. In his paper containing the lemma, Shelah gives credit also to Micha Perles, and for this reason the lemma has also been called the Perles–Sauer–Shelah lemma and the Sauer–Shelah–Perles lemma.
Buzaglo et al. call this lemma "one of the most fundamental results on VC-dimension", and it has applications in many areas. Sauer's motivation was in the combinatorics of set systems, while Shelah's was in model theory and that of Vapnik and Chervonenkis was in statistics. It has also been applied in discrete geometry and graph theory.
Definitions and statement
If
is a family of sets and
is a set, then
is said to be
shattered by
if every subset of
(including the
empty set and
itself) can be obtained as the intersection
of
with some set
in the family. The
VC dimension of
is the largest
cardinality of a set shattered by
.
In terms of these definitions, the Sauer–Shelah lemma states that if
is a family of sets whose union has
elements, and if the number of sets in the family,
, obeys the inequality
then
shatters a set of size
. Equivalently, if the VC dimension of
is
then
can consist of at most
sets, as expressed using
big O notation.
The bound of the lemma is tight: Let the family
be composed of all subsets of
with size less than
. Then the size of
is exactly
but it does not shatter any set of size
.
The number of shattered sets
A strengthening of the Sauer–Shelah lemma, due to, states that every finite set family
shatters at least
sets. This immediately implies the Sauer–Shelah lemma, because only
of the subsets of an
-item universe have cardinality less than
. Thus, when
there are not enough small sets to be shattered, so one of the shattered sets must have cardinality at least
.
For a restricted type of shattered set, called an order-shattered set, the number of shattered sets always equals the cardinality of the set family.
Proof
Pajor's variant of the Sauer–Shelah lemma may be proved by mathematical induction; the proof has variously been credited to Noga Alon or to Ron Aharoni and Ron Holzman.
- Base: Every family of only one set shatters the empty set.
Step: Assume the lemma is true for all families of size less than
and let
be a family of two or more sets. Let
be an element that belongs to some but not all of the sets in
. Split
into two subfamilies, of the sets that contain
and the sets that do not contain
. By the induction assumption, these two subfamilies shatter two collections of sets whose sizes add to at least
. None of these shattered sets contain
, since a set that contains
cannot be shattered by a family in which all sets contain
or all sets do not contain
. Some of the shattered sets may be shattered by both subfamilies. When a set
is shattered by only one of the two subfamilies, it contributes one unit both to the number of shattered sets of the subfamily and to the number of shattered sets of
. When a set
is shattered by both subfamilies, both
and
are shattered by
, so
contributes two units to the number of shattered sets of the subfamilies and of
. Therefore, the number of shattered sets of
is at least equal to the number shattered by the two subfamilies of
, which is at least
.A different proof of the Sauer–Shelah lemma in its original form, by Péter Frankl and János Pach, is based on linear algebra and the inclusion–exclusion principle. This proof extends to other settings such as families of vector spaces and, more generally, geometric lattices.
Applications
The original application of the lemma, by Vapnik and Chervonenkis, was in showing that every probability distribution can be approximated (with respect to a family of events of a given VC dimension) by a finite set of sample points whose cardinality depends only on the VC dimension of the family of events. In this context, there are two important notions of approximation, both parameterized by a number
: a set
of samples, and a probability distribution on
, is said to be an
-approximation of the original distribution if the probability of each event with respect to
differs from its original probability by at most
. A set
of (unweighted) samples is said to be an
-net if every event with probability at least
includes at least one point of
. An
-approximation must also be an
-net but not necessarily vice versa.Vapnik and Chervonenkis used the lemma to show that set systems of VC dimension
always have
-approximations of cardinality Later authors including and similarly showed that there always exist
-nets of cardinality O(\tfrac{d}{\varepsilon}log\tfrac{1}{\varepsilon})
, and more precisely of cardinality at most The main idea of the proof of the existence of small
-nets is to choose a random sample
of cardinality and a second independent random sample
of cardinality , and to bound the probability that
is missed by some large event
by the probability that
is missed and simultaneously the intersection of
with
is larger than its median value. For any particular
, the probability that
is missed while
is larger than its median is very small,and the Sauer–Shelah lemma (applied to
) shows that only a small number of distinct events
need to be considered, so by the union bound, with nonzero probability,
is an
-net.In turn,
-nets and
-approximations, and the likelihood that a random sample of large enough cardinality has these properties, have important applications in machine learning, in the area of probably approximately correct learning. In computational geometry, they have been applied to range searching, derandomization, and approximation algorithms.use generalizations of the Sauer–Shelah lemma to prove results in graph theory such as that the number of strong orientations of a given graph is sandwiched between its numbers of connected and 2-edge-connected subgraphs.
See also