In differential geometry, Santaló's formula describes how to integrate a function on the unit sphere bundle of a Riemannian manifold by first integrating along every geodesic separately and then over the space of all geodesics. It is a standard tool in integral geometry and has applications in isoperimetric[1] and rigidity results.[2] The formula is named after Luis Santaló, who first proved the result in 1952.[3] [4]
Let
(M,\partialM,g)
f:SM → C
\intSMf(x,v)d\mu(x,v)=
\int | |
\partial+SM |
\left[
\tau(x,v) | |
\int | |
0 |
f(\varphit(x,v))dt\right]\langlev,\nu(x)\rangled\sigma(x,v),
(\varphit)t
\tau(x,v)=\sup\{t\ge0:\foralls\in[0,t]:~\varphis(x,v)\inSM\}
(x,v)\inSM
\mu
\sigma
SM
\partialSM
\mu
\nu
\partialM
\partial+SM:=\{(x,v)\inSM:x\in\partialM,\langlev,\nu(x)\rangle\ge0\}
Under the assumptions that
M
\tau(x,v)<infty
(x,v)\inSM
\partialM
II\partial(x)
x\in\partialM
f\inCinfty(M)
\Phi*d\mu(x,v,t)=\langle\nu(x),x\rangled\sigma(x,v)dt,
\Omega=\{(x,v,t):(x,v)\in\partial+SM,t\in(0,\tau(x,v))\}
\Phi:\Omega → SM
\Phi(x,v,t)=\varphit(x,v)
If(x,v)=
\tau(x,v) | |
\int | |
0 |
f(\varphit(x,v))dt
I:L1(SM,\mu) →
1(\partial | |
L | |
+ |
SM,\sigma\nu)
d\sigma\nu(x,v)=\langlev,\nu(x)\rangled\sigma(x,v)
L1
\intSMfd\mu=
\int | |
\partial+SM |
If~d\sigma\nu forallf\inL1(SM,\mu).
If the non-trapping or the convexity condition from above fail, then there is a set
E\subsetSM
E
M
E
The following proof is taken from [<ref>Guillarmou, Colin, Marco Mazzucchelli, and Leo Tzou. "Boundary and lens rigidity for non-convex manifolds." American Journal of Mathematics 143 (2021), no. 2, 533-575. </ref> Lemma 3.3], adapted to the (simpler) setting when conditions 1) and 2) from above are true. Santaló's formula follows from the following two ingredients, noting that
\partial0SM=\{(x,v):\langle\nu(x),v\rangle=0\}
X
\intSMXu~d\mu=-
\int | |
\partial+SM |
u~d\sigma\nu forallu\inCinfty(SM)
Xu=-f
\existsR:
infty( | |
C | |
c |
SM\smallsetminus\partial0SM) → Cinfty(SM):XRf=-fand
Rf\vert | |
\partial+SM |
=If forallf\in
infty( | |
C | |
c |
SM\smallsetminus\partial0SM)
For the integration by parts formula, recall that
X
\mu
Xu=\operatorname{div}G(uX)
G
\langleX(x,v),N(x,v)\rangleG=\langlev,\nu(x)\rangleg
N
\partialSM
Rf(x,v)=
\tau(x,v) | |
\int | |
0 |
f(\varphit(x,v))dt
infty( | |
C | |
c |
SM\smallsetminus\partial0SM) → Cinfty(SM)
\tau:SM\smallsetminus\partial0SM → [0,infty)