Sachdev–Ye–Kitaev model explained

In condensed matter physics and black hole physics, the Sachdev–Ye–Kitaev (SYK) model is an exactly solvable model initially proposed by Subir Sachdev and Jinwu Ye,[1] and later modified by Alexei Kitaev to the present commonly used form.[2] [3] The model is believed to bring insights into the understanding of strongly correlated materials and it also has a close relation with the discrete model of AdS/CFT. Many condensed matter systems, such as quantum dot coupled to topological superconducting wires,[4] graphene flake with irregular boundary,[5] and kagome optical lattice with impurities,[6] are proposed to be modeled by it. Some variants of the model are amenable to digital quantum simulation,[7] with pioneering experiments implemented in nuclear magnetic resonance.[8]

Model

Let

n

be an integer and

m

an even integer such that

2\leqm\leqn

, and consider a set of Majorana fermions

\psi1,...c,\psin

which are fermion operators satisfying conditions:
  1. Hermitian
\dagger
\psi
i

=\psii

;
  1. Clifford relation

\{\psii,\psij\}=2\deltaij

.

Let

J
i1i2im
be random variables whose expectations satisfy:
E(J
i1i2 … im

)=0

2)=1
E(J
i1i2 … im
.

Then the SYK model is defined as

H\rm=im/2

\sum
1\leqi1<<im\leqn
J
i1i2 … im
\psi
i1
\psi
i2
\psi
im
.

Note that sometimes an extra normalization factor is included.

The most famous model is when

m=4

:

H\rm=-

1
4!
n
\sum
i1,...c,i4=1
J
i1i2i3i4
\psi
i1
\psi
i2
\psi
i3
\psi
i4
,

where the factor

1/4!

is included to coincide with the most popular form.

See also

Notes and References

  1. Sachdev. Subir. Ye. Jinwu. 1993-05-24. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Physical Review Letters. 70. 21. 3339–3342. 10.1103/PhysRevLett.70.3339. 10053843. cond-mat/9212030. 1993PhRvL..70.3339S. 1103248 .
  2. Web site: Alexei Kitaev, Caltech & KITP, A simple model of quantum holography (part 1). online.kitp.ucsb.edu. 2019-11-02.
  3. Web site: Alexei Kitaev, Caltech, A simple model of quantum holography (part 2). online.kitp.ucsb.edu. 2019-11-02.
  4. Chew. Aaron. Essin. Andrew. Alicea. Jason. 2017-09-29. Approximating the Sachdev-Ye-Kitaev model with Majorana wires. Phys. Rev. B. 96. 12. 121119. 10.1103/PhysRevB.96.121119. 1703.06890 . 2017PhRvB..96l1119C . 119222270 .
  5. Chen. Anffany. Ilan. R.. Juan. F.. Pikulin. D.I.. Franz. M.. 2018-06-18. Quantum Holography in a Graphene Flake with an Irregular Boundary. Phys. Rev. Lett.. 121. 3. 036403. 10.1103/PhysRevLett.121.036403. 30085787 . 1802.00802. 2018PhRvL.121c6403C . 51940526 .
  6. Wei. Chenan. Sedrakyan. Tigran. 2021-01-29. Optical lattice platform for the Sachdev-Ye-Kitaev model. Phys. Rev. A. 103. 1. 013323. 10.1103/PhysRevA.103.013323. 2005.07640. 2021PhRvA.103a3323W. 234363891 .
  7. García-Álvarez. L.. Egusquiza. I.L.. Lamata. L.. del Campo. A.. Sonner. J.. Solano. E.. 2017. Digital Quantum Simulation of Minimal AdS/CFT. Physical Review Letters. 119. 4 . 040501. 10.1103/PhysRevLett.119.040501. 29341740 . 1607.08560. 2017PhRvL.119d0501G . 5144368 .
  8. Luo. Z.. You. Y.-Z.. Li. J.. Jian. C.-M.. Lu. D.. Xu. C.. Zeng. B.. Laflamme . R.. 2019. Quantum simulation of the non-fermi-liquid state of Sachdev-Ye-Kitaev model. npj Quantum Information . 5. 53. 10.1038/s41534-019-0166-7. 1712.06458. 2019npjQI...5...53L. 195344916 .