S transform explained

S transform as a time–frequency distribution was developed in 1994 for analyzing geophysics data.[1] [2] In this way, the S transform is a generalization of the short-time Fourier transform (STFT), extending the continuous wavelet transform and overcoming some of its disadvantages. For one, modulation sinusoids are fixed with respect to the time axis; this localizes the scalable Gaussian window dilations and translations in S transform. Moreover, the S transform doesn't have a cross-term problem and yields a better signal clarity than Gabor transform. However, the S transform has its own disadvantages: the clarity is worse than Wigner distribution function and Cohen's class distribution function.

A fast S transform algorithm was invented in 2010.[3] [4] It reduces the computational complexity from O[N<sup>2</sup>·log(N)] to O[N·log(N)] and makes the transform one-to-one, where the transform has the same number of points as the source signal or image, compared to storage complexity of N2 for the original formulation.[5] An implementation is available to the research community under an open source license.[6]

A general formulation of the S transform makes clear the relationship to other time frequency transforms such as the Fourier, short time Fourier, and wavelet transforms.

Definition

There are several ways to represent the idea of the S transform. In here, S transform is derived as the phase correction of the continuous wavelet transform with window being the Gaussian function.

Sx(t,f)=

infty
\int
-infty
-\pi(t-\tau)2f2
x(\tau)|f|e

e-j2d\tau

x(\tau)=

infty
\int
-infty
infty
\left[\int
-infty

Sx(t,f)dt\right]ej2\pidf

Modified form

The above definition implies that the s-transform function can be express as the convolution of

(x(\tau)e-j2)

and

(

-\pit2f2
|f|e

)

.
Applying the Fourier transform to both

(x(\tau)e-j2)

and

(

-\pit2f2
|f|e

)

gives

Sx(t,f)=

infty
\int
-infty
-\pi\alpha2/f2
X(f+\alpha)e

ej2\pi\alphad\alpha

.

From the spectrum form of S-transform, we can derive the discrete-time S-transform.
Let

t=n\DeltaTf=m\DeltaF\alpha=p\DeltaF

, where

\DeltaT

is the sampling interval and

\DeltaF

is the sampling frequency.
The Discrete time S-transform can then be expressed as:

Sx(n\DeltaT,m\DeltaF)=

N-1
\sum
p=0
-\pip2
m2
X[(p+m)\Delta
F]e
j2pn
N
e

Implementation of discrete-time S-transform

Below is the Pseudo code of the implementation.
Step1.Compute

X[p\DeltaF]


loop over m (voices) Step2.Compute
-\pi
p2
m2
e
for

f=m\DeltaF


Step3.Move

X[p\DeltaF]

to

X[(p+m)\DeltaF]


Step4.Multiply Step2 and Step3

B[m,p]=X[(p+m)\DeltaF]

-\pi
p2
m2
e

Step5.IDFT(

B[m,p]

). Repeat.}

Comparison with other time–frequency analysis tools

Comparison with Gabor transform

The only difference between the Gabor transform (GT) and the S transform is the window size. For GT, the windows size is a Gaussian function

(

-\pi(t-\tau)2
e

)

, meanwhile, the window function for S-Transform is a function of f. With a window function proportional to frequency, S Transform performs well in frequency domain analysis when the input frequency is low. When the input frequency is high, S-Transform has a better clarity in the time domain. As table below.
Low-frequency Bad clarity in time domain Good clarity in frequency domain
High-frequency Bad clarity in frequency domainGood clarity in time domain
This kind of property makes S-Transform a powerful tool to analyze sound because human is sensitive to low frequency part in a sound signal.

Comparison with Wigner transform

The main problem with the Wigner Transform is the cross term, which stems from the auto-correlation function in the Wigner Transform function. This cross term may cause noise and distortions in signal analyses. S-transform analyses avoid this issue.

Comparison with the short-time Fourier transform

We can compare the S transform and short-time Fourier transform (STFT).[7] First, a high frequency signal, a low frequency signal, and a high frequency burst signal are used in the experiment to compare the performance. The S transform characteristic of frequency dependent resolution allows the detection of the high frequency burst. On the other hand, as the STFT consists of a constant window width, it leads to the result having poorer definition. In the second experiment, two more high frequency bursts are added to crossed chirps. In the result, all four frequencies were detected by the S transform. On the other hand, the two high frequencies bursts are not detected by STFT. The high frequencies bursts cross term caused STFT to have a single frequency at lower frequency.

Applications

See also

References

Notes and References

  1. Stockwell . RG . Mansinha . L . Lowe . RP . 1996 . Localization of the complex spectrum: the S transform . IEEE Transactions on Signal Processing . 44 . 4. 998–1001 . 10.1109/78.492555. 1996ITSP...44..998S . 10.1.1.462.1500 . 30202517 .
  2. Stockwell, RG (1999). S-transform analysis of gravity wave activity from a small scale network of airglow imagers. PhD thesis, University of Western Ontario, London, Ontario, Canada.
  3. Book: 19163232 . 10.1109/IEMBS.2008.4649729 . 2008 . 2008 . 2586–9 . Brown . RA . Frayne . R. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society . A fast discrete S-transform for biomedical signal processing . 978-1-4244-1814-5 . 29974786 .
  4. Brown. Robert A.. Lauzon. M. Louis. Frayne. Richard. January 2010. A General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly. IEEE Transactions on Signal Processing. 58. 1. 281–290. 10.1109/tsp.2009.2028972. 2010ITSP...58..281B. 16074001. 1053-587X.
  5. Kelly Sansom, "Fast S Transform", University of Calgary, https://www.ucalgary.ca/news/utoday/may31-2011/computing
  6. Web site: Fast S-Transform download SourceForge.net. 13 August 2018 .
  7. E. Sejdić, I. Djurović, J. Jiang, "Time-frequency feature representation using energy concentration: An overview of recent advances," Digital Signal Processing, vol. 19, no. 1, pp. 153-183, January 2009.
  8. Analysis of non-stationary structural systems by using a band-variable filter . 10.1007/s10518-012-9338-y . 2012 . Ditommaso . Rocco . Mucciarelli . Marco . Ponzo . Felice Carlo . Bulletin of Earthquake Engineering . 10 . 3 . 895–911 . 2012BuEE...10..895D . . See also MATLAB file
  9. Hongmei Zhu, and J. Ross Mitchell, "The S Transform in Medical Imaging," University of Calgary Seaman Family MR Research Centre Foothills Medical Centre, Canada.
  10. Book: 10.1109/PECON.2010.5697562 . Coherency determination in grid-connected distributed generation based hybrid system under islanding scenarios . 2010 IEEE International Conference on Power and Energy . 2010 . Ray . Prakash K. . Mohanty . Soumya R. . Kishor . Nand . Dubey . Harish C. . 85–88 . 978-1-4244-8947-3 .