SN 1979C was a supernova about 50 million light-years away in Messier 100, a spiral galaxy in the constellation Coma Berenices. The Type II supernova was discovered April 19, 1979 by Gus Johnson, a school teacher and amateur astronomer.[1] This type of supernova is known as a core collapse and is the result of the internal collapse and violent explosion of a large star. A star must have at least 9 times the mass of the Sun in order to undergo this type of collapse.[2] The star that resulted in this supernova was estimated to be in the range of 20 solar masses.
On November 15, 2010 NASA announced that evidence of a black hole had been detected as a remnant of the supernova explosion. Scientists led by Dr. Dan Patnaude from the Center for Astrophysics Harvard & Smithsonian in Cambridge, MA evaluated data gathered between 1995 and 2007 from several space based observatories. NASA's Chandra X-ray Observatory, the Swift Gamma-Ray Burst Mission, as well as the European Space Agency's XMM-Newton, and Germany's ROSAT all participated in the examination.[3]
The researchers observed a steady source of X-rays and determined that it was likely that this was material being fed into the object either from the supernova or a binary companion. However, an alternative explanation would be that the X-ray emissions could be from the pulsar wind nebula from a rapidly spinning pulsar, similar to the one in the center of the Crab Nebula.[3] These two ideas account for several types of known X-ray sources. In the case of black holes the material that falls into the black hole emits the X-rays and not the black hole itself. Gas is heated by the fall into the strong gravitational field.
SN 1979C has also been studied in the radio frequency spectrum. A light curve study was performed between 1985 and 1990 using the Very Large Array radio telescope in New Mexico.[4]