Ordinal Pareto efficiency refers to several adaptations of the concept of Pareto-efficiency to settings in which the agents only express ordinal utilities over items, but not over bundles. That is, agents rank the items from best to worst, but they do not rank the subsets of items. In particular, they do not specify a numeric value for each item. This may cause an ambiguity regarding whether certain allocations are Pareto-efficient or not. As an example, consider an economy with three items and two agents, with the following rankings:
Consider the allocation [Alice: x, George: y,z]. Whether or not this allocation is Pareto-efficient depends on the agents' numeric valuations. For example:
Since the Pareto-efficiency of an allocation depends on the rankings of bundles, it is a-priori not clear how to determine the efficiency of an allocation when only rankings of items are given.
An allocation X = (X1,...,Xn) Pareto-dominates another allocation Y = (Y1,...,Yn), if every agent i weakly prefers the bundle Xi to the bundle Yi, and at least one agent j strictly prefers Xj to Yj. An allocation X is Pareto-efficient if no other allocation Pareto-dominates it. Sometimes, a distinction is made between discrete-Pareto-efficiency, which means that an allocation is not dominated by a discrete allocation, and the stronger concept of Fractional Pareto efficiency, which means that an allocation is not dominated even by a fractional allocation.
The above definitions depend on the agents' ranking of bundles (sets of items). In our setting, agents report only their rankings of items. A bundle ranking is called consistent with an item ranking if it ranks the singleton bundles in the same order as the items they contain. For example, if Alice's ranking is, then any consistent bundle ranking must have < < <