The Soreq Applied Research Accelerator Facility (SARAF), located at the Soreq Nuclear Research Center (SNRC) in Yavne, Israel, is a multi-user and versatile particle accelerator facility based on a proton/deuteron RF superconducting linear accelerator. It has a variable energy of around 40 MeV and a continuous wave (CW) high ion current (0.04-5 mA).[1] [2]
The SARAF, a high-intensity superconducting linear particle accelerator for light ions, belongs to a new generation of particle accelerators.[3] The high ion current generates an unprecedented amount of fast neutrons and radioactive nuclei that may be used to explore rare nuclear reactions, produce new types of radiopharmaceuticals, and further research in particle physics. Moderated neutrons can be used for non-destructive tests with similar resolution and contrast as those performed in reactors. Accelerator facilities such as SARAF are designed to produce enough neutrons to perform the functions that are today possible only at research nuclear reactors, such as IRR1 at Soreq. Since accelerators do not use fissile materials, they are expected to be a welcome replacement of research reactors, as they do not pose a proliferation or an environmental concern, and they have much better public acceptance than nuclear reactors. The SARAF Phase-I accelerator was built by ACCEL Instruments (now RI Research Instruments GmbH). The novel acceleration technology proved the feasibility of the construction of the full SARAF Project. Until 2012 (and since 2010), SARAF was the only superconducting accelerator in the world to demonstrate CW acceleration of mA-range proton beams.
The research and development programs at SARAF include the following subjects:
SARAF collaborated with Israeli research institutes and universities, as well as with accelerator laboratories from around the world. Newly developed components from other accelerator projects are being tested at SARAF.The central role of SARAF in the linear accelerator community led to Soreq NRC being host to the 26th bi-annual LINAC conference, LINAC'12, at Tel Aviv in September 2012.[4] SARAF has become a major facility for students and young researchers to perform their graduate studies and practice in nuclear physics and nuclear engineering. Over the last 8 years, approximately 10 graduate students, 15 undergraduate students and 5 post-doctorate fellows have performed research projects associated with SARAF.[5]
The construction of SARAF was initiated by the Soreq NRC in 2003 and is divided into two phases:
Phase I - A proof of the innovative technologies that are required for constructing the SARAF accelerator. Achievements of Phase I include the first acceleration of 1 mA CW, 4 MeV proton beams through a HWR based superconducting accelerator, routinely delivered to targets and beam dumps and low duty cycle acceleration of 5 MeV deuterons. Low energy acceleration of such beams is crucial for all present and future high-intensity linear accelerator projects worldwide.[6]
Phase II – The completion of the accelerator to its specified performance, the construction of a target hall, target stations and all necessary infrastructure. Phase II is planned to commence at 2in3. The Phase II accelerator is foreseen to be completed by 2018 and the target hall and stations are planned to be operational by the end of the decade. Soreq is planning to construct the Phase II accelerator in collaboration with a world leading accelerator laboratory.[7]