Ruppeiner geometry is thermodynamic geometry (a type of information geometry) using the language of Riemannian geometry to study thermodynamics. George Ruppeiner proposed it in 1979. He claimed that thermodynamic systems can be represented by Riemannian geometry, and that statistical properties can be derived from the model.
This geometrical model is based on the inclusion of the theory of fluctuations into the axioms of equilibrium thermodynamics, namely, there exist equilibrium states which can be represented by points on two-dimensional surface (manifold) and the distance between these equilibrium states is related to the fluctuation between them. This concept is associated to probabilities, i.e. the less probable a fluctuation between states, the further apart they are. This can be recognized if one considers the metric tensor gij in the distance formula (line element) between the two equilibrium states
ds2=
R | |
g | |
ij |
dxidxj,
R | |
g | |
ij |
=-\partiali\partialjS(U,Na)
The Ruppeiner metric can be understood as the thermodynamic limit (large systems limit) of the more general Fisher information metric.[1] For small systems (systems where fluctuations are large), the Ruppeiner metric may not exist, as second derivatives of the entropy are not guaranteed to be non-negative.
The Ruppeiner metric is conformally related to the Weinhold metric via
2 | |
ds | |
R |
=
1 | |
T |
2 | |
ds | |
W |
W | |
g | |
ij |
=\partiali\partialjU(S,Na)
It has long been observed that the Ruppeiner metric is flat for systems with noninteracting underlying statistical mechanics such as the ideal gas. Curvature singularities signal critical behaviors. In addition, it has been applied to a number of statistical systems including Van der Waals gas. Recently the anyon gas has been studied using this approach.
This geometry has been applied to black hole thermodynamics, with some physically relevant results. The most physically significant case is for the Kerr black hole in higher dimensions, where the curvature singularity signals thermodynamic instability, as found earlier by conventional methods.
The entropy of a black hole is given by the well-known Bekenstein–Hawking formula
S=
kBc3A | |
4G\hbar |
kB
c
G
A
S=S(M,Na)
M
S=S(M)