Routh–Hurwitz matrix explained
In mathematics, the Routh–Hurwitz matrix,[1] or more commonly just Hurwitz matrix, corresponding to a polynomial is a particular matrix whose nonzero entries are coefficients of the polynomial.
Hurwitz matrix and the Hurwitz stability criterion
Namely, given a real polynomial
p(z)=a0
zn-1+ … +an-1z+an
the
square matrixH=
\begin{pmatrix}
a1&a3&a5&...&...&...&0&0&0\\
a0&a2&a4&&&&\vdots&\vdots&\vdots\\
0&a1&a3&&&&\vdots&\vdots&\vdots\\
\vdots&a0&a2&\ddots&&&0&\vdots&\vdots\\
\vdots&0&a1&&\ddots&&an&\vdots&\vdots\\
\vdots&\vdots&a0&&&\ddots&an-1&0&\vdots\\
\vdots&\vdots&0&&&&an-2&an&\vdots\\
\vdots&\vdots&\vdots&&&&an-3&an-1&0\\
0&0&0&...&...&...&an-4&an-2&an
\end{pmatrix}.
is called Hurwitz matrix corresponding to the polynomial
. It was established by
Adolf Hurwitz in 1895 that a real polynomial with
is
stable(that is, all its roots have strictly negative real part) if and only if all the leading principal
minors of the matrix
are positive:
\begin{align}
\Delta1(p)&=\begin{vmatrix}a1\end{vmatrix}&&=a1>0\\[2mm]
\Delta2(p)&=\begin{vmatrix}
a1&a3\\
a0&a2\\
\end{vmatrix}&&=a2a1-a0a3>0\\[2mm]
\Delta3(p)&=\begin{vmatrix}
a1&a3&a5\\
a0&a2&a4\\
0&a1&a3\\
\end{vmatrix}&&=a3\Delta2-a1(a1a4-a0a5)>0
\end{align}
and so on. The minors
are called the
Hurwitz determinants. Similarly, if
then the polynomial is stable if and only if the principal minors have alternating signs starting with a negative one.
Example
As an example, consider the matrix
M=
\begin{pmatrix}
-1&-1&0\\
1&-1&0\\
0&0&-1\end{pmatrix},
and let
\begin{align}
p(x)&=\det(xI-M)\\
&=
\begin{vmatrix}
x+1&1&0\\
-1&x+1&0\\
0&0&x+1\end{vmatrix}\\
&=(x+1)3-(1)(-1)(x+1)\\
&=x3+3x2+4x+2
\end{align}
be the
characteristic polynomial of
. The Routh–Hurwitz matrix associated to
is then
H=
\begin{pmatrix}
3&2&0\\
1&4&0\\
0&3&2\end{pmatrix}.
The leading principal minors of
are
\begin{align}
\Delta1(p)&=\begin{vmatrix}3\end{vmatrix}&&=3>0\\[2mm]
\Delta2(p)&=\begin{vmatrix}
3&2\\
1&4\\
\end{vmatrix}&&=12-2=10>0\\[2mm]
\Delta3(p)&=\begin{vmatrix}
3&2&0\\
1&4&0\\
0&3&2\\
\end{vmatrix}&&=2\Delta2(p)=20>0.
\end{align}
Since the leading principal minors are all positive, all of the roots of
have negative real part. Moreover, since
is the characteristic polynomial of
, it follows that all the eigenvalues of
have negative real part, and hence
is a
Hurwitz-stable matrix.
See also
References
- Asner . Bernard A. Jr. . 1970 . On the Total Nonnegativity of the Hurwitz Matrix . . 18 . 2 . 407–414 . 10.1137/0118035 . 2099475.
- Dimitrov . Dimitar K. . Peña . Juan Manuel . 2005 . Almost strict total positivity and a class of Hurwitz polynomials . . 132 . 2 . 212–223 . 10.1016/j.jat.2004.10.010. free . 11449/21728 . free .
- Book: Gantmacher, F. R.
. 1959 . Applications of the Theory of Matrices . . New York.
- Hurwitz . A. . 1895 . Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt . . 46 . 2 . 273–284 . 10.1007/BF01446812. 121036103 .
- Lehnigk . Siegfried H. . 1970 . On the Hurwitz matrix . . 21 . 3 . 498–500 . 1970ZaMP...21..498L . 10.1007/BF01627957. 123380473 .
Notes and References
- Book: Horn . Roger . Johnson . Charles . Topics in matrix analysis . 1991 . 0-521-30587-X . 101.