Routh–Hurwitz matrix explained

In mathematics, the Routh–Hurwitz matrix,[1] or more commonly just Hurwitz matrix, corresponding to a polynomial is a particular matrix whose nonzero entries are coefficients of the polynomial.

Hurwitz matrix and the Hurwitz stability criterion

Namely, given a real polynomial

p(z)=a0

n+a
z
1

zn-1+ … +an-1z+an

the

n x n

square matrix

H= \begin{pmatrix} a1&a3&a5&...&...&...&0&0&0\\ a0&a2&a4&&&&\vdots&\vdots&\vdots\\ 0&a1&a3&&&&\vdots&\vdots&\vdots\\ \vdots&a0&a2&\ddots&&&0&\vdots&\vdots\\ \vdots&0&a1&&\ddots&&an&\vdots&\vdots\\ \vdots&\vdots&a0&&&\ddots&an-1&0&\vdots\\ \vdots&\vdots&0&&&&an-2&an&\vdots\\ \vdots&\vdots&\vdots&&&&an-3&an-1&0\\ 0&0&0&...&...&...&an-4&an-2&an \end{pmatrix}.

is called Hurwitz matrix corresponding to the polynomial

p

. It was established by Adolf Hurwitz in 1895 that a real polynomial with

a0>0

is stable(that is, all its roots have strictly negative real part) if and only if all the leading principal minors of the matrix

H(p)

are positive:

\begin{align} \Delta1(p)&=\begin{vmatrix}a1\end{vmatrix}&&=a1>0\\[2mm] \Delta2(p)&=\begin{vmatrix} a1&a3\\ a0&a2\\ \end{vmatrix}&&=a2a1-a0a3>0\\[2mm] \Delta3(p)&=\begin{vmatrix} a1&a3&a5\\ a0&a2&a4\\ 0&a1&a3\\ \end{vmatrix}&&=a3\Delta2-a1(a1a4-a0a5)>0 \end{align}

and so on. The minors

\Deltak(p)

are called the Hurwitz determinants. Similarly, if

a0<0

then the polynomial is stable if and only if the principal minors have alternating signs starting with a negative one.

Example

As an example, consider the matrix

M= \begin{pmatrix} -1&-1&0\\ 1&-1&0\\ 0&0&-1\end{pmatrix},

and let

\begin{align} p(x)&=\det(xI-M)\\ &= \begin{vmatrix} x+1&1&0\\ -1&x+1&0\\ 0&0&x+1\end{vmatrix}\\ &=(x+1)3-(1)(-1)(x+1)\\ &=x3+3x2+4x+2 \end{align}

be the characteristic polynomial of

M

. The Routh–Hurwitz matrix associated to

p

is then

H= \begin{pmatrix} 3&2&0\\ 1&4&0\\ 0&3&2\end{pmatrix}.

The leading principal minors of

H

are

\begin{align} \Delta1(p)&=\begin{vmatrix}3\end{vmatrix}&&=3>0\\[2mm] \Delta2(p)&=\begin{vmatrix} 3&2\\ 1&4\\ \end{vmatrix}&&=12-2=10>0\\[2mm] \Delta3(p)&=\begin{vmatrix} 3&2&0\\ 1&4&0\\ 0&3&2\\ \end{vmatrix}&&=2\Delta2(p)=20>0. \end{align}

Since the leading principal minors are all positive, all of the roots of

p

have negative real part. Moreover, since

p

is the characteristic polynomial of

M

, it follows that all the eigenvalues of

M

have negative real part, and hence

M

is a Hurwitz-stable matrix.

See also

References

Notes and References

  1. Book: Horn . Roger . Johnson . Charles . Topics in matrix analysis . 1991 . 0-521-30587-X . 101.