In mathematics, the Rost invariant is a cohomological invariant of an absolutely simple simply connected algebraic group G over a field k, which associates an element of the Galois cohomology group H3(k, Q/Z(2)) to a principal homogeneous space for G. Here the coefficient group Q/Z(2) is the tensor product of the group of roots of unity of an algebraic closure of k with itself. first introduced the invariant for groups of type F4 and later extended it to more general groups in unpublished work that was summarized by .
The Rost invariant is a generalization of the Arason invariant.
Suppose that G is an absolutely almost simple simply connected algebraic group over a field k. The Rost invariant associates an element a(P) of the Galois cohomology group H3(k,Q/Z(2)) to a G-torsor P.
The element a(P) is constructed as follows. For any extension K of k there is an exact sequence
0 → H3(K,Q/Z(2)) →
3 | |
H | |
et |
(PK,Q/Z(2)) → Q/Z
These invariants a(P) are functorial in field extensions K of k; in other words the fit together to form an element of the cyclic group Inv3(G,Q/Z(2)) of cohomological invariants of the group G, which consists of morphisms of the functor K→H1(K,G) to the functor K→H3(K,Q/Z(2)). This element of Inv3(G,Q/Z(2)) is a generator of the group and is called the Rost invariant of G.