Rosemary Carpenter Explained
Rosemary Carpenter should not be confused with Rosemary Carpenter Fitzgerald.
Rosemary Carpenter |
Workplaces: | John Innes Centre |
Alma Mater: | University of East Anglia |
Thesis Title: | Studies on genetic instability in Antirrhinum majus |
Thesis Url: | https://www.worldcat.org/oclc/ |
Thesis Year: | 1998 |
Spouses: | )--> |
Partners: | )--> |
Rosemary Carpenter is a British plant geneticist known for her work on members of the genus Antirrhinum, commonly known as a snapdragon, for which she and Enrico Coen were awarded the 2004 Darwin Medal by the Royal Society.[1]
Career
Starting in the 1960, Carpenter worked with Brian Harrison at the John Innes Centre on unstable mutants of the snapdragon Antirrhinum.[2] After meeting Carpenter during an interview at the John Innes Centre in 1983, Enrico Coen joined the center and they began a long collaboration with him using snapdragons as a model system to understand jumping genes and evolution.[3] They applied a combination of molecular, genetic and morphological approaches to snapdragons with the goal of elucidating patterns in flower development[4] using the hundreds of Antirrhihum mutants established by Carpenter.[5] Carpenter retired in 2003.[6]
Research
Carpenter is a plant geneticist known for her research on the population genetics of the snapdragon, Antirrhihum.[7] Working with Brian Harrison in the 1970s, she defined genetic instabilities in Antirrhinum and the role of temperature in controlling the rate of instability of specific genes[8] [9] and transposable elements that occur in both maize and snapdragons.[10] This was the first time a link between genetic instability and Antirrhihum was formalized, a milestone in research using snapdragons.[11] The instability of genes in snapdragons begin Carpenter's collaboration with Enrico Coen, where they first worked on transposons and the effect of temperature on the excision of specific genes[12] and how the transposable elements cause variability in gene expression.[13] [14] Carpenter, Coen, and their students isolated the genes controlling floral development.[15] [16] [17] These genetic investigations allowed them to define the patterns of color,[18] [19] shape,[20] [21] [22] and floral asymmetry[23] [24] in snapdragons and other plants. Carpenter's research on snapdragons includes investigations of how snapdragons select their colors using small RNA,[25] which alter the selection of colors in the snapdragons.[26]
Selected publications
- Carpenter. R. Coen. E S. 1990-09-01. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus.. Genes & Development. en. 4. 9. 1483–1493. 10.1101/gad.4.9.1483. 1979295. 0890-9369. free.
- Coen. Enrico S.. Romero. JoséM.. Doyle. Sandra. Elliott. Robert. Murphy. George. Carpenter. Rosemary. 1990. floricaula: A homeotic gene required for flower development in antirrhinum majus. Cell. en. 63. 6. 1311–1322. 10.1016/0092-8674(90)90426-F. 1702033. 46586130.
- Carpenter. R.. Coen. E.S.. 1995-01-01. Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers. Development. 121. 1. 19–26. 10.1242/dev.121.1.19. 7867500. 0950-1991.
- Luo. Da. Carpenter. Rosemary. Vincent. Coral. Copsey. Lucy. Coen. Enrico. 1996. Origin of floral asymmetry in Antirrhinum. Nature. en. 383. 6603. 794–799. 10.1038/383794a0. 8893002. 1996Natur.383..794L . 2188470. 0028-0836.
- Bradley . Desmond . Carpenter . Rosemary . Copsey . Lucy . Vincent . Coral . Rothstein . Steven . Coen . Enrico . Control of inflorescence architecture in Antirrhinum . Nature . February 1996 . 379 . 6568 . 791–797 . 10.1038/379791a0. 8587601 . 1996Natur.379..791B . 998958 .
External links
Notes and References
- Web site: Award winners: Darwin Medal . Royal Society.
- Coen. E. S.. 1996. Floral symmetry.. The EMBO Journal. en. 15. 24. 6777–6788. 10.1002/j.1460-2075.1996.tb01069.x. 9003753. 452503.
- Web site: 2002-02-20. Flower Development, E Coen and R Carpenter, Cell & Developmental Biology Department - JIC UK. 2021-09-25. https://web.archive.org/web/20020220175223/http://www.jic.bbsrc.ac.uk/staff/enrico-coen/index.htm. 2002-02-20.
- Web site: 2002-03-11. E.Coen and R.Caprpenter, Flower Development, Research Programme. 2021-09-25. https://web.archive.org/web/20020311093507/http://www.jic.bbsrc.ac.uk/staff/enrico-coen/Program/Index.htm. 2002-03-11.
- 2019. Return of the snapdragon. Nature Plants. en. 5. 2. 121. 10.1038/s41477-019-0377-0. 30737515 . 2055-0278. free.
- Web site: Past members - Flower Development, E Coen, Cell & Developmental Biology Department - JIC UK. 2021-09-25. rico-coen.jic.ac.uk. 25 September 2021. https://web.archive.org/web/20210925130702/http://rico-coen.jic.ac.uk/index.php/Past_members. dead.
- Studies on genetic instability in Antirrhinum majus.. 1998. English. Rosemary. Carpenter.
- Harrison. Brian J. Carpenter. Rosemary. 1973. A comparison of the instabilities at the Nivea and Pallida loci in Antirrhinum majus. Heredity. en. 31. 3. 309–323. 10.1038/hdy.1973.88. 21953999. 0018-067X. free.
- Harrison. Brian J.. Carpenter. Rosemary. 1979-11-01. Resurgence of genetic instability in Antirrhinum majus. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. en. 63. 1. 47–66. 10.1016/0027-5107(79)90103-9. 0027-5107.
- Sommer. Hans. Carpenter. Rosemary. Harrison. Brian J.. Saedler. Heinz. 1985. The transposable element Tam3 of Antirrhinum majus generates a novel type of sequence alterations upon excision. Molecular and General Genetics. en. 199. 2. 225–231. 10.1007/BF00330263. 8399480. 0026-8925.
- Schwarz-Sommer. Zsuzsanna. Davies. Brendan. Hudson. Andrew. 2003. An everlasting pioneer: the story of Antirrhinum research. Nature Reviews Genetics. en. 4. 8. 655–664. 10.1038/nrg1127. 12897777. 1842/704. 205482851. 1471-0056. free.
- Martin. Cathie. Carpenter. Rosemary. Sommer. Hans. Saedler. Heinz. Coen. Enrico S.. 1985. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. The EMBO Journal. en. 4. 7. 1625–1630. 10.1002/j.1460-2075.1985.tb03829.x. 16453618. 554396.
- Coen. Enrico S.. Carpenter. Rosemary. Martin. Cathie. 1986. Transposable elements generate novel spatial patterns of gene expression in antirrhinum majus. Cell. en. 47. 2. 285–296. 10.1016/0092-8674(86)90451-4. 3021338. 24465394.
- Carpenter. Rosemary. Martin. Cathie. Coen. Enrico S.. 1987. Comparison of genetic behaviour of the transposable element Tam3 at two unlinked pigment loci in Antirrhinum majus. Molecular and General Genetics. en. 207. 1. 82–89. 10.1007/BF00331494. 31982611. 0026-8925.
- Carpenter. R. Coen. E S. 1990-09-01. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus.. Genes & Development. en. 4. 9. 1483–1493. 10.1101/gad.4.9.1483. 1979295. 0890-9369. free.
- Coen. Enrico S.. Romero. JoséM.. Doyle. Sandra. Elliott. Robert. Murphy. George. Carpenter. Rosemary. 1990. floricaula: A homeotic gene required for flower development in antirrhinum majus. Cell. en. 63. 6. 1311–1322. 10.1016/0092-8674(90)90426-F. 1702033. 46586130.
- Goodrich. Justin. Carpenter. Rosemary. Coen. Enrico S.. 1992. A common gene regulates pigmentation pattern in diverse plant species. Cell. en. 68. 5. 955–964. 10.1016/0092-8674(92)90038-E. 1547495. 42832523.
- Bradley. Desmond. Carpenter. Rosemary. Sommer. Hans. Hartley. Nigel. Coen. Enrico. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell. en. 72. 1. 85–95. 10.1016/0092-8674(93)90052-R. 8093684. 23878779.
- Coen. Enrico S.. Carpenter. Rosemary. 1993. The Metamorphosis of Flowers. The Plant Cell. 5. 10. 1175–1181. 10.2307/3869771. 3869771. 12271021. 160351 .
- Carpenter. R. Copsey. L. Vincent. C. Doyle. S. Magrath. R. Coen. E. 1995. Control of flower development and phyllotaxy by meristem identity genes in antirrhinum.. The Plant Cell. en. 7. 12. 2001–2011. 10.1105/tpc.7.12.2001. 1040-4651. 161057. 8718618.
- Luo. Da. Carpenter. Rosemary. Vincent. Coral. Copsey. Lucy. Coen. Enrico. 1996. Origin of floral asymmetry in Antirrhinum. Nature. en. 383. 6603. 794–799. 10.1038/383794a0. 8893002. 1996Natur.383..794L . 2188470. 0028-0836.
- Da Luo. Carpenter. Rosemary. Copsey. Lucy. Vincent. Coral. Clark. Jennifer. Coen. Enrico. 1999. Control of Organ Asymmetry in Flowers of Antirrhinum. Cell. 99. 4. 367–376. 10.1016/s0092-8674(00)81523-8. 10571179. 14346487. 0092-8674. free.
- Nath. Utpal. Crawford. Brian C. W.. Carpenter. Rosemary. Coen. Enrico. 2003-02-28. Genetic Control of Surface Curvature. Science. 299. 5611. 1404–1407. 10.1126/science.1079354. 12610308. 8059321.
- Corley. Susie B.. Carpenter. Rosemary. Copsey. Lucy. Coen. Enrico. 2005-04-05. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences. en. 102. 14. 5068–5073. 10.1073/pnas.0501340102. 0027-8424. 555980. 15790677. 2005PNAS..102.5068C . free.
- Bradley. Desmond. Xu. Ping. Mohorianu. Irina-Ioana. Whibley. Annabel. Field. David. Tavares. Hugo. Couchman. Matthew. Copsey. Lucy. Carpenter. Rosemary. Li. Miaomiao. Li. Qun. 2017-11-17. Evolution of flower color pattern through selection on regulatory small RNAs. Science. 358. 6365. 925–928. 10.1126/science.aao3526. 29146812. 2017Sci...358..925B . 5060290. free.
- Web site: Centre. John Innes. How Snapdragons keep their colour: Signposting trick reveals evolutionary mechanism. 2021-09-25. phys.org. en.