In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions. The identities were first discovered and proved by, and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913. Ramanujan had no proof, but rediscovered Rogers's paper in 1917, and they then published a joint new proof . independently rediscovered and proved the identities.
The Rogers–Ramanujan identities are
G(q)=
infty | |
\sum | |
n=0 |
| |||||
(q;q)n |
=
1 | |||||||||||||||
|
=1+q+q2+q3+2q4+2q5+3q6+ …
H(q)
infty | |
=\sum | |
n=0 |
| |||||
(q;q)n |
=
1 | ||||||||||||||||||
|
=1+q2+q3+q4+q5+2q6+ …
Here,
(a;q)n
Consider the following:
| |||||
(q;q)n |
n
1 | |||||||||||||||
|
| |||||
(q;q)n |
n
1 | ||||||||||||||||||
|
The Rogers–Ramanujan identities could be now interpreted in the following way. Let
n
n
n
n
n
Alternatively,
n
k
k
n
n
k
k+1
n
Since the terms occurring in the identity are generating functions of certain partitions, the identities make statements about partitions (decompositions) of natural numbers. The number sequences resulting from the coefficients of the Maclaurin series of the Rogers–Ramanujan functions G and H are special partition number sequences of level 5:
G(x)=
1 | |||||||||||||||
|
=1+
infty | |
\sum | |
n=1 |
PG(n)xn
H(x)=
1 | ||||||||||||||||||
|
=1+
infty | |
\sum | |
n=1 |
PH(n)xn
PG(n)
N0
PG(n)
And the number sequence
PH(n)
N0
PH(n)
1 | 1 | 1 | |
2 | 1 | 1+1 | |
3 | 1 | 1+1+1 | |
4 | 2 | 4, 1+1+1+1 | |
5 | 2 | 4+1, 1+1+1+1+1 | |
6 | 3 | 6, 4+1+1, 1+1+1+1+1+1 | |
7 | 3 | 6+1, 4+1+1+1, 1+1+1+1+1+1+1 | |
8 | 4 | 6+1+1, 4+4, 4+1+1+1+1, 1+1+1+1+1+1+1+1 | |
9 | 5 | 9, 6+1+1+1, 4+4+1, 4+1+1+1+1+1, 1+1+1+1+1+1+1+1+1 | |
10 | 6 | 9+1, 6+4, 6+1+1+1+1, 4+4+1+1, 4+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1 | |
11 | 7 | 11, 9+1+1, 6+4+1, 6+1+1+1+1+1, 4+4+1+1+1, 4+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1 | |
12 | 9 | 11+1, 9+1+1+1, 6+6, 6+4+1+1, 6+1+1+1+1+1+1, 4+4+4, 4+4+1+1+1+1, 4+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1 | |
13 | 10 | 11+1+1, 9+4, 9+1+1+1+1, 6+6+1, 6+4+1+1+1, 6+1+1+1+1+1+1+1, 4+4+4+1, 4+4+1+1+1+1+1, 4+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1 | |
14 | 12 | 14, 11+1+1+1, 9+4+1, 9+1+1+1+1+1, 6+6+1+1, 6+4+4, 6+4+1+1+1+1, 6+1+1+1+1+1+1+1+1, 4+4+4+1+1, 4+4+1+1+1+1+1+1, 4+1+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1+1 | |
15 | 14 | 14+1, 11+4, 11+1+1+1+1, 9+6, 9+4+1+1, 9+1+1+1+1+1+1, 6+6+1+1+1, 6+4+4+1, 6+4+1+1+1+1+1, 6+1+1+1+1+1+1+1+1+1, 4+4+4+1+1+1, 4+4+1+1+1+1+1+1+1, 4+1+1+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 | |
16 | 17 | 16, 14+1+1, 11+4+1, 11+1+1+1+1+1, 9+6+1, 9+4+1+1+1, 9+1+1+1+1+1+1+1, 6+6+4, 6+6+1+1+1+1, 6+4+4+1+1, 6+4+1+1+1+1+1+1, 6+1+1+1+1+1+1+1+1+1+1, 4+4+4+4, 4+4+4+1+1+1+1, 4+4+1+1+1+1+1+1+1+1, 4+1+1+1+1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1 |
1 | 0 | none | |
2 | 1 | 2 | |
3 | 1 | 3 | |
4 | 1 | 2+2 | |
5 | 1 | 3+2 | |
6 | 2 | 3+3, 2+2+2 | |
7 | 2 | 7, 3+2+2 | |
8 | 3 | 8, 3+3+2, 2+2+2+2 | |
9 | 3 | 7+2, 3+3+3, 3+2+2+2 | |
10 | 4 | 8+2, 7+3, 3+3+2+2, 2+2+2+2+2 |
R(q)
S(q)
The factor
| ||||
q |
This definition applies for the continued fraction mentioned:
R(q)=q1/5
| ||||||||||||||||||
|
R(q)=q1/5
infty | |
\prod | |
k=0 |
(1-q5k+1)(1-q5k+) | |
(1-q5k+2)(1-q5k+3) |
=q1/5
H(q) | |
G(q) |
This is the definition of the Ramanujan theta function:
f(a,b)=
infty | |
\sum | |
k=-infty |
| ||||
a |
| ||||
b |
With this function, the continued fraction R can be created this way:
R(q)=q1/5
f(-q,-q4) | |
f(-q2,-q3) |
The connection between the continued fraction and the Rogers–Ramanujan functions was already found by Rogers in 1894 (and later independently by Ramanujan).
The continued fraction can also be expressed by the Dedekind eta function:
R(q)=\tanl\{
1 | \arccotl[ | |
2 |
ηW(q1/5) | |
2ηW(q5) |
+
1 | |
2 |
r]r\}
The alternating continued fraction
S(q)
S(q)=q1/5
H(-q) | |
G(-q) |
S(q)=q1/5
f(q,-q4) | |
f(-q2,q3) |
S(q)=
R(q4) | |
R(q)R(q2) |
S(q)=q1/5
G(q)G(q2)H(q4) | |
H(q)H(q2)G(q4) |
The following definitions are valid for the Jacobi "Theta-Nullwert" functions:
\vartheta00(x)=1+
infty | |
2\sum | |
n=1 |
x\Box(n)
\vartheta01(x)=1-
infty | |
2\sum | |
n=1 |
(-1)nx\Box(n)
\vartheta10(x)=2x1/4+2x1/4
infty | |
\sum | |
n=1 |
x2triangleup(n)
And the following product definitions are identical to the total definitions mentioned:
\vartheta00(x)=
infty | |
\prod | |
n=1 |
(1-x2n)(1+x2n-1)2
\vartheta01(x)=
infty | |
\prod | |
n=1 |
(1-x2n)(1-x2n-1)2
\vartheta10(x)=2x1/4
infty | |
\prod | |
n=1 |
(1-x2n)(1+x2n)2
\vartheta10(x)=\sqrt[4]{\vartheta00(x)4-\vartheta01(x)4}
The mathematicians Edmund Taylor Whittaker and George Neville Watson[5] [6] discovered these definitional identities.
The Rogers–Ramanujan continued fraction functions
R(x)
S(x)
R(x)=\tanl\langle
1 | \arccotl\{ | |
2 |
\vartheta01(x1/5)[5\vartheta01(x5)2-\vartheta01(x)2] | ||||||||
|
+
1 | |
2 |
r\}r\rangle
S(x)=\tanl\langle
1 | \arccotl\{ | |
2 |
\vartheta00(x1/5)[5\vartheta00(x5)2-\vartheta00(x)2] | ||||||||
|
-
1 | |
2 |
r\}r\rangle
The element of the fifth root can also be removed from the elliptic nome of the theta functions and transferred to the external tangent function. In this way, a formula can be created that only requires one of the three main theta functions:
R(x)=\tanl\{
1 | \arctanl[ | |
2 |
1 | |
2 |
-
\vartheta01(x)2 | |
2\vartheta01(x5)2 |
r]r\}1/5\tanl\{
1 | \arccotl[ | |
2 |
1 | |
2 |
-
\vartheta01(x)2 | |
2\vartheta01(x5)2 |
r]r\}2/5
S(x)=\tanl\{
1 | \arctanl[ | |
2 |
\vartheta00(x)2 | |
2\vartheta00(x5)2 |
-
1 | |
2 |
r]r\}1/5\cotl\{
1 | \arccotl[ | |
2 |
\vartheta00(x)2 | |
2\vartheta00(x5)2 |
-
1 | |
2 |
r]r\}2/5
An elliptic function is a modular function if this function in dependence on the elliptic nome as an internal variable function results in a function, which also results as an algebraic combination of Legendre's elliptic modulus and its complete elliptic integrals of the first kind in the K and K' form. The Legendre's elliptic modulus is the numerical eccentricity of the corresponding ellipse.
If you set
q=e2
\tau\inC
GM(q)=
| ||||||
q |
G(q)
HM(q)=
| ||||
q |
H(q)
If q = e2πiτ, then q-1/60G(q) and q11/60H(q) are modular functions of τ.
For the Rogers–Ramanujan continued fraction R(q) this formula is valid based on the described modular modifications of G and H:
R(q)=
HM(q) | |
GM(q) |
These functions have the following values for the reciprocal of Gelfond's constant and for the square of this reciprocal:
\begin{align} GMl[\exp(-\pi)r]&=2-1/25-1/4(\sqrt{5}-1)1(\sqrt[4]{5}+1)1/2Rl[\exp(-\pi)r]-1/2=\\[4pt] &=21/45-1/8\Phi1/2{\color{blue}\cosl[\tfrac{1}{4}\arctan(2)+\tfrac{1}{2}\arcsin(\Phi-2)r]} \end{align}
\begin{align} HMl[\exp(-\pi)r]&=2-1/25-1/4(\sqrt{5}-1)1(\sqrt[4]{5}+1)1/2Rl[\exp(-\pi)r]1/2= \\[4pt] &=21/45-1/8\Phi1/2{\color{blue}\sinl[\tfrac{1}{4}\arctan(2)+\tfrac{1}{2}\arcsin(\Phi-2)r]} \end{align}
\begin{align} GMl[\exp(-2\pi)r]&=10-1/4(\sqrt{5}-1)1/4Rl[\exp(-2\pi)r]-1/2=\\[4pt] &=21/25-1/8{\color{blue}\cosl[\tfrac{1}{4}\arctan(2)r]} \end{align}
\begin{align} HMl[\exp(-2\pi)r]&=10-1/4(\sqrt{5}-1)1/4Rl[\exp(-2\pi)r]1/2=\\[4pt] &=21/25-1/8{\color{blue}\sinl[\tfrac{1}{4}\arctan(2)r]} \end{align}
The Rogers–Ramanujan continued fraction takes the following ordinate values for these abscissa values:
\begin{align} R[\exp(-\pi)]{}&=\tfrac{1}{4}(\sqrt{5}+1)(\sqrt{5}-\sqrt{\sqrt{5}+2})(\sqrt{\sqrt{5}+2}+\sqrt[4]{5})=\\[4pt] &{}=\Phi3/2\operatorname{cl}(\tfrac{1}{5}\varpi)-3/2\operatorname{cl}(\tfrac{2}{5}\varpi)3/2\operatorname{cl}(\tfrac{1}{10}\varpi)2\operatorname{cl}(\tfrac{3}{10}\varpi)\operatorname{slh}(\tfrac{2}{5}\sqrt{2}\varpi)=\\[4pt] &{}={\color{blue}\tanl[\tfrac{1}{4}\arctan(2)+\tfrac{1}{2}\arcsin(\Phi-2)r]}\\[4pt] \end{align} | |
\begin{align} R[\exp(-2\pi)]{}&=4\sin(\tfrac{1}{20}\pi)\sin(\tfrac{3}{20}\pi)=\\[4pt] &{}={\color{blue}\tanl[\tfrac{1}{4}\arctan(2)r]} \end{align} |
Given are the mentioned definitions of
GM
HM
GM(q)=
| ||||
q |
1 | |||||||||||||||
|
HM(q)=
| ||||
q |
1 | ||||||||||||||||||
|
The Dedekind eta function identities for the functions G and H result by combining only the following two equation chains:
The quotient is the Rogers Ramanujan continued fraction accurately:
HM(q) ÷ GM(q)=R(q)
But the product leads to a simplified combination of Pochhammer operators:
HM(q)GM(q)=q1/6
1 | |||||||||||||||||||||||||||
|
=
=q1/6
| |||||||||||||
(q;q)infty |
=
ηW(q5) | |
ηW(q) |
The geometric mean of these two equation chains directly lead to following expressions in dependence of the Dedekind eta function in their Weber form:
GM(q)=ηW(q5)1/2ηW(q)-1/2R(q)-
HM(q)=ηW(q5)1/2ηW(q)-1/2R(q)1
In this way the modulated functions
GM
HM
With the Pochhammer products alone, the following identity then applies to the non-modulated functions G and H:
G(q)
-1 | |
=(q;q | |
infty |
(q4;q
-1 | |
infty |
=(q5
1/2 | |
;q | |
infty |
-1/2 | ||
(q;q) | l[ | |
infty |
H(q) | |
G(q) |
r]-1/2
H(q)=(q2;q
-1 | |
infty |
(q3;q
-1 | |
infty |
=(q5;q
1/2 | |
infty |
-1/2 | ||
(q;q) | l[ | |
infty |
H(q) | |
G(q) |
r]1/2
For the Dedekind eta function according to Weber's definition[7] these formulas apply:
ηW(x)=2-1/6\vartheta10(x)1/6\vartheta00(x)1/6\vartheta01(x)2/3
ηW(x)=2-1/3\vartheta10(x1/2)1/3\vartheta00(x)1/3\vartheta01(x1/2)1/3
ηW(x)=x1/24
infty | |
\prod | |
n=1 |
(1-xn)=x1/24(x;x)infty
ηW(x)=x1/24l\{1+
infty | |
\sum | |
n=1 |
l[-xFn-xKr(2n-1)+xFn(2n)+xKr(2n)r]r\}
ηW(x)=x1/24l\{1+
infty | |
\sum | |
n=1 |
P(n)xnr\}-1
The fourth formula describes the pentagonal number theorem[8] because of the exponents!
These basic definitions apply to the pentagonal numbers and the card house numbers:
Fn(z)=\tfrac{1}{2}z(3z-1)
Kr(z)=\tfrac{1}{2}z(3z+1)
The fifth formula contains the Regular Partition Numbers as coefficients.
The Regular Partition Number Sequence
P(n)
n
n=1
n=5
P
1 | 1 | (1) | |
2 | 2 | (1+1), (2) | |
3 | 3 | (1+1+1), (1+2), (3) | |
4 | 5 | (1+1+1+1), (1+1+2), (2+2), (1+3), (4) | |
5 | 7 | (1+1+1+1+1), (1+1+1+2), (1+2+2), (1+1+3), (2+3), (1+4), (5) | |
6 | 11 | (1+1+1+1+1+1), (1+1+1+1+2), (1+1+2+2), (2+2+2), (1+1+1+3), (1+2+3), (3+3), (1+1+4), (2+4), (1+5), (6) |
The following further simplification for the modulated functions
GM
HM
ηW(q5) | |
ηW(q) |
=
ηW(q2)4 | |
ηW(q)4 |
\vartheta01(q5) | l[ | |
\vartheta01(q) |
5\vartheta01(q5)2 | |
4\vartheta01(q)2 |
-
1 | |
4 |
r]-1
These two identities with respect to the Rogers–Ramanujan continued fraction were given for the modulated functions
GM
HM
GM(q)=ηW(q5)1/2ηW(q)-1/2R(q)-
HM(q)=ηW(q5)1/2ηW(q)-1/2R(q)1
The combination of the last three formulas mentioned results in the following pair of formulas:
GM(q)=
r]1/2l[
-
r]-1/2R(q)-1/2 | ||||||||||||||
HM(q)=
r]1/2l[
-
r]-1/2R(q)1/2 |
The Weber modular functions in their reduced form are an efficient way of computing the values of the Rogers–Ramanujan functions:
First of all we introduce the reduced Weber modular functions in that pattern:
wRn(\varepsilon)=
2(n[q(\varepsilon)n;q(\varepsilon)2n]infty | ||||||
|
wR5(\varepsilon)=
2[q(\varepsilon)5;q(\varepsilon)10]infty | ||||||
|
This function fulfills following equation of sixth degree:
wR5(\varepsilon)6-2wR5(\varepsilon)5=
(\varepsilon)+1r] |
Therefore this
wR5
But along with the Abel–Ruffini theorem this function in relation to the eccentricity can not be represented by elementary expressions.
However there are many values that in fact can be expressed elementarily.
Four examples shall be given for this:
First example:
wR5(\tfrac{1}{2}\sqrt{2})6-2wR5(\tfrac{1}{2}\sqrt{2})5=16wR5(\tfrac{1}{2}\sqrt{2})+8 | |
wR5(\tfrac{1}{2}\sqrt{2})=\sqrt[4]{5}+1 |
Second example:
wR5(\sqrt{2}-1)6-2wR5(\sqrt{2}-1)5=2wR5(\sqrt{2}-1)+1 | |
wR5(\sqrt{2}-1)=\tfrac{1}{2}l\{\tfrac{4}{3}\sqrt{2}\cos(\tfrac{1}{10}\pi)\cosh[\tfrac{1}{3}\operatorname{artanh}(\tfrac{3}{8}\sqrt{6})]+\tfrac{1}{3}\tan(\tfrac{1}{5}\pi)r\}2-\tfrac{1}{2}= =\Phi-1\cotl[\tfrac{1}{4}\pi-\arctanl(\tfrac{1}{3}\sqrt{5}-\tfrac{1}{3}\sqrt[3]{6\sqrt{30}+4\sqrt{5}}+\tfrac{1}{3}\sqrt[3]{6\sqrt{30}-4\sqrt{5}}r)r]= |
Third example:
wR5l[(2-\sqrt{3})(\sqrt{3}-\sqrt{2})r]6-2wR5l[(2-\sqrt{3})(\sqrt{3}-\sqrt{2})r]5=(\sqrt{2}-1)4l\{2wR5[(2-\sqrt{3})(\sqrt{3}-\sqrt{2})r]+1r\} | |
wR5[(2-\sqrt{3})(\sqrt{3}-\sqrt{2})r]=\cotl[\tfrac{1}{4}\pi-\tfrac{1}{4}\arccsc(\tfrac{1}{4}\sqrt{10}+\tfrac{1}{4})r] |
Fourth example:
wR5l[(2-\sqrt{3})(\sqrt{3}+\sqrt{2})r]6-2wR5l[(2-\sqrt{3})(\sqrt{3}+\sqrt{2})r]5=(\sqrt{2}+1)4l\{2wR5[(2-\sqrt{3})(\sqrt{3}+\sqrt{2})r]+1r\} | |
wR5[(2-\sqrt{3})(\sqrt{3}+\sqrt{2})r]=\cotl[\tfrac{1}{4}\arccsc(\tfrac{1}{4}\sqrt{10}+\tfrac{1}{4})r] |
For that function, a further expression is valid:
wR5(\varepsilon)=
5\vartheta01[q(k)5]2 | |
2\vartheta01[q(k)]2 |
-
1 | |
2 |
In this way the accurate eccentricity dependent formulas for the functions G and H can be generated:
Following Dedekind eta function quotient has this eccentricity dependency:
ηW[q(\varepsilon)2] | |
ηW[q(\varepsilon)] |
=2-1/4\tanl[2\arctan(\varepsilon)r]1/12
This is the eccentricity dependent formula for the continued fraction R:
R[q(\varepsilon)]=\tanl\{
1 | \arctanl[ | |
2 |
wR5(\varepsilon)-2 | |
2wR5(\varepsilon)+1 |
r]r\}1/5\tanl\{
1 | \arccotl[ | |
2 |
wR5(\varepsilon)-2 | |
2wR5(\varepsilon)+1 |
r]r\}2/5
The last three now mentioned formulas will be inserted into the final formulas mentioned in the section above:
GMl[q(\varepsilon)r]=
r]r\}-1/10\tanl\{
r]r\}-1/5 | |||||||||||||||||||
HMl[q(\varepsilon)r]=
r]r\}1/10\tanl\{
r]r\}1/5 |
On the left side of the balances the functions
GM(q)
HM(q)
q(\varepsilon)
And on the right side an algebraic combination of the eccentricity
\varepsilon
Therefore these functions
GM(q)=q-1/60G(q)
HM(q)=q11/60H(q)
The general case of quintic equations in the Bring–Jerrard form has a non-elementary solution based on the Abel–Ruffini theorem and will now be explained using the elliptic nome of the corresponding modulus, described by the lemniscate elliptic functions in a simplified way.
x5+5x=4c
The real solution for all real values
c\in\R
\begin{align} x={}&
Sl\langleq\{\operatorname{ctlh | |
[\tfrac{1}{2}\operatorname{aclh}(c)] |
2\}r\rangle2-Rl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(c)]2\}2r\rangle}{Sl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(c)]2\}r\rangle2} x \\[4pt] &{} x
1-Rl\langleq\{\operatorname{ctlh | |
[\tfrac{1}{2}\operatorname{aclh}(c)] |
2\}2r\rangleSl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(c)]2\}r\rangle}{Rl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(c)]2\}2r\rangle2} x \\[4pt] &{} x
\vartheta00l\langleq\{\operatorname{ctlh | |
[\tfrac{1}{2}\operatorname{aclh}(c)] |
2\}5r\rangle\vartheta00l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(c)]2\}1/5r\rangle2-5\vartheta00l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(c)]2\}5r\rangle
3}{4\vartheta | |
10 |
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}
2\}r\rangle\vartheta | |
\operatorname{aclh}(c)] | |
01 |
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}
2\}r\rangle\vartheta | |
\operatorname{aclh}(c)] | |
00 |
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(c)]2\}r\rangle} \end{align}
Alternatively, the same solution can be presented in this way:
\begin{align} x={}&
| |||||||||
4\vartheta10(Q)\vartheta01(Q)\vartheta00(Q) |
x
S(Q)2+R(Q2) | |
S(Q) |
x l[R(Q2)S(Q)+R(Q2)+S(Q)-1r]\\[4pt] &withQ=ql\{ctlhl[\tfrac{1}{2}\operatorname{aclh}(c)r]2r\} \end{align}
The mathematician Charles Hermite determined the value of the elliptic modulus k in relation to the coefficient of the absolute term of the Bring–Jerrard form. In his essay "Sur la résolution de l'Équation du cinquiéme degré Comptes rendus" he described the calculation method for the elliptic modulus in terms of the absolute term. The Italian version of his essay "Sulla risoluzione delle equazioni del quinto grado" contains exactly on page 258 the upper Bring–Jerrard equation formula, which can be solved directly with the functions based on the corresponding elliptic modulus. This corresponding elliptic modulus can be worked out by using the square of the Hyperbolic lemniscate cotangent. For the derivation of this, please see the Wikipedia article lemniscate elliptic functions!
The elliptic nome of this corresponding modulus is represented here with the letter Q:
Q=ql\{ctlhl[\tfrac{1}{2}\operatorname{aclh}(c)r]2r\}=
=ql[l(\sqrt{\sqrt{c4+1}+1}+cr)l(2c2+2+2\sqrt{c4+1}r)-1/2r]
The abbreviation ctlh expresses the Hyperbolic Lemniscate Cotangent and the abbreviation aclh represents the Hyperbolic Lemniscate Areacosine!
Two examples of this solution algorithm are now mentioned:
First calculation example:
Quintic Bring–Jerrard equation: x5+5x=8 Solution formula: \begin{align} x={}&
2\}r\rangle2-Rl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(2)]2\}2r\rangle}{Sl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(2)]2\}r\rangle2} x \\[4pt] &{} x
2\}2r\rangleSl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(2)]2\}r\rangle}{Rl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(2)]2\}2r\rangle2} x \\[4pt] &{} x
2\}5r\rangle\vartheta00l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(2)]2\}1/5r\rangle2-5\vartheta00l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(2)]2\}5r\rangle
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(2)]2\}r\rangle} \end{align} Decimal places of the nome: ql\{ctlhl[\tfrac{1}{2}\operatorname{aclh}(2)r]2r\}=ql[l(\sqrt{\sqrt{17}+1}+2r)l(10+2\sqrt{17}r)-1/2r]= =0{,}3063466544466074265361088194021326272090461143559097382981847144\ldots Decimal places of the solution: x=1{,}1670361837016430473110194319963961012975521104880199105205748723\ldots |
Second calculation example:
Quintic Bring–Jerrard equation: x5+5x=12 Solution: \begin{align} x={}&
2\}r\rangle2-Rl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(3)]2\}2r\rangle}{Sl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(3)]2\}r\rangle2} x \\[4pt] &{} x
2\}2r\rangleSl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(3)]2\}r\rangle}{Rl\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(3)]2\}2r\rangle2} x \\[4pt] &{} x
2\}5r\rangle\vartheta00l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(3)]2\}1/5r\rangle2-5\vartheta00l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(3)]2\}5r\rangle
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}
l\langleq\{\operatorname{ctlh}[\tfrac{1}{2}\operatorname{aclh}(3)]2\}r\rangle} \end{align} Decimal places of the nome: ql\{ctlhl[\tfrac{1}{2}\operatorname{aclh}(3)r]2r\}=ql[l(\sqrt{\sqrt{82}+1}+3r)l(20+2\sqrt{82}r)-1/2r]= =0{,}3706649511520240756244325221775686571518680899597473957509743879\ldots Decimal places of the solution: x=1{,}3840917958231463592477551262671354748859350601806764501691889116\ldots |
The Rogers–Ramanujan identities appeared in Baxter's solution of the hard hexagon model in statistical mechanics.
The demodularized standard form of the Ramanujan's continued fraction unanchored from the modular form is as follows::
H(q) | |
G(q) |
=\left[1+
q | ||||||
|
\right]
James Lepowsky and Robert Lee Wilson were the first to prove Rogers–Ramanujan identities using completely representation-theoretic techniques. They proved these identities using level 3 modules for the affine Lie algebra
\widehat{ak{sl}2}
Z
(2) | |
A | |
2 |
(1) | |
A | |
1 |
(1) | |
A | |
1 |