Rodney S. Ruoff Explained

Rodney S. Ruoff
Nationality:American
Field:Carbon and related materials
Workplaces:Ulsan National Institute of Science and Technology, Center for Multidimensional Carbon Materials
Alma Mater:University of Illinois-Urbana, University of Texas at Austin
Thesis Title:Fourier-Transform Microwave Spectroscopy of Hydrogen-bonded Trimers and of Conformer Relaxation in Free Jets
Thesis Year:1988
Doctoral Advisor:Herbert S. Gutowsky
Awards:Clarivate Citation Laureate, James C. McGroddy Prize for New Materials
Website:http://cmcm.ibs.re.kr

Rodney S. "Rod" Ruoff is an American physical chemist and nanoscience researcher. He is one of the world experts on carbon materials including carbon nanostructures such as fullerenes, nanotubes, graphene, diamond, and has had pioneering discoveries on such materials and others. Ruoff received his B.S. in chemistry from the University of Texas at Austin (1981) and his Ph.D. in chemical physics at the University of Illinois-Urbana (1988). After a Fulbright Fellowship at the MPI fuer Stroemungsforschung in Goettingen, Germany (1989) and postdoctoral work at the IBM T. J. Watson Research Center (1990–91), Ruoff became a staff scientist in the Molecular Physics Laboratory at SRI International (1991–1996). He is currently UNIST Distinguished Professor at the Ulsan National Institute of Science and Technology (UNIST), and the director of the Center for Multidimensional Carbon Materials, an Institute for Basic Science Center located at UNIST.

Research

Rod Ruoff and his research groups have made seminal contributions to developing new synthesis techniques and improving our understanding of properties of novel materials including nanostructures and 2D materials, especially novel carbon materials (graphene, diamond, nanotubes, sp3-sp2 hybrids, negative curvature carbon, carbon nanofoams, boron nitride allotropes, fullerenes, etc.). Some examples of pioneering studies, among others, include:(i) of the mechanics of C60,[1] and of nanotubes,[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] including pullout of inner shell with respect to outer shell of the nanotube,[12] and of a connection between mechanical deformation and structure on the one hand, and chemical reactivity on the other;[13] [14] (ii) of solubility phenomena of fullerenes, nanotubes, and graphene;[15] [16] [17] [18] [19] [20] (iii) of carbon-encapsulated metal nanoparticles;[21] [22] (iv) of patterned graphite and thus micromechanically exfoliated graphene-like flakes;[23] [24] (v) of scaled growth of graphene on copper and copper-nickel foils;[25] [26] [27] [28] [29] [30] [31] [32] (vi) of isotopically labeled graphites (graphite oxide) and graphene;[33] [34] [35] [36] (vii) of graphene oxide and reduced graphene oxide and composites and paper-like films composed of them;[37] [38] [39] [40] [41] [42] (viii) of the use of chemically modified graphene and graphite foam for electrode materials in electrical energy storage;[43] [44] [45] [46] [47] (ix) of graphene as a support film for biological TEM;[48] (x) of graphene as a protective coating against oxidation (and corrosion) (please also note Appl. Phys. Lett. 92, 052506 (2008) and Appl. Phys. Lett. 93, 022509 (2008)).[49] Ruoff provided some personal perspectives on graphene and new carbon materials ‘on the horizon’ in 2012.[50] As a graduate student at the University of Illinois-Urbana, Ruoff and colleagues published seminal papers on the structure of weakly bound clusters formed in supersonic jets,[51] and of relaxation processes in supersonic jets.[52]

His predictions with A. L. Ruoff about the mechanical response of fullerite under high pressure, and his work with colleagues on the unique solvation phenomena of C60 in various solvent systems, and of synthesis and structural characterization of supergiant fullerenes containing single crystal metal ‘encapsulates’, have demonstrated to the scientific community the novel properties of closed-shell carbon structures. He also co-developed a new in-situ mechanical testing device for measuring the tensile response of bundles of SWCNTs and individual MWCNTs inside of a scanning electron microscope. This work has yielded important insights into the mechanics and tribology of these systems, and suggested the possibility of very low friction linear bearings. Similarly, Ruoff and collaborators were the first to use solubility parameters to rationalize the solubility of fullerenes, of single-walled nanotubes, and of chemically modified graphenes. Furthermore, Rod is credited with first creating graphene by lithographic patterning to make single crystal graphite micropillars; he and his team achieved thereby single crystal multilayer graphene platelets.

From 2009, Ruoff and collaborators have demonstrated synthesis of large area monolayer graphene on copper foil by chemical vapor deposition, for which relatively high carrier mobilities have been obtained, and subsequently have used isotopic labeling and micro-Raman mapping to map grains and grain boundaries in such atom thick layers and to elucidate growth mechanisms, and studied their performance as transparent conductive electrodes. Ruoff and his collaborators have also made a series of advances in novel composite systems comprising chemically modified graphene platelets.

Ruoff and his team were the first to use graphene as electrodes of electrochemical capacitors, reporting on graphene supercapacitors in 2008. In 2011, Ruoff and his group reported on a new carbon, potentially having regions of ‘negative curvature carbon’ (NCC) with a remarkably high specific surface area of 3100 m2 g−1, and atom-thick carbon sp2-bonded walls that define pores varying in diameter from about 0.6 to 5 nm. They showed that this type of porous carbon (‘a-MEGO’) works very well as an electrode material for double-layer supercapacitors, a very exciting advance.

In 2024, they introduced a novel method of synthetic diamond creation at 1 atmosphere of pressure in around 150 minutes without needing seeds.[53] [54]

Rod and his team continue to make contributions at the Institute for Basic Science Center for Multidimensional Carbon Materials with a focus on carbon and related materials but also in some other research topics.

Rod has a Hirsch factor of 156.[55] He is inventor or co-inventor on 60 issued patents.[56]

Positions

Awards and fellowships

See also

External links

Notes and References

  1. 10.1038/350663b0. Is C60 stiffer than diamond?. Nature. 350. 6320. 663. 1991. Ruoff . R. S. . Ruoff . A. L. . 1991Natur.350..663R . 4238403.
  2. 10.1038/364514a0. Radial deformation of carbon nanotubes by van der Waals forces. Nature. 364. 6437. 514–516. 1993. Ruoff . R. S.. Tersoff . J. . Lorents . D. C. . Subramoney . S. . Chan . B.. 1993Natur.364..514R . 4264362.
  3. 10.1103/PhysRevLett.73.676. 10057509. Structural Properties of a Carbon-Nanotube Crystal. Physical Review Letters. 73. 5. 676–679. 1994. Tersoff . J.. Ruoff . R.. 1994PhRvL..73..676T .
  4. 10.1088/0957-4484/10/3/304. Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology. 10. 3. 244. 1999. Yu . M. . Dyer . M. J. . Skidmore . G. D. . Rohrs . H. W. . Lu . X. . Ausman . K. D. . Ehr . J. R. V. . Ruoff . R. S. . 1999Nanot..10..244Y . 250789342.
  5. Yu . M. . Lourie . O. . Dyer . M. J. . Moloni . K. . Kelly . T. F. . Ruoff . R. S. . Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load . 10.1126/science.287.5453.637 . Science . 287 . 5453 . 637–640 . 2000 . 10649994. 2000Sci...287..637Y . 10758240 .
  6. Yu . M. F. . Files . B. . Arepalli . S. . Ruoff . R. . Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties . 10.1103/PhysRevLett.84.5552 . Physical Review Letters . 84 . 24 . 5552–5555 . 2000 . 10990992. 2000PhRvL..84.5552Y .
  7. 10.1103/PhysRevLett.85.1456. 10970528. Investigation of the Radial Deformability of Individual Carbon Nanotubes under Controlled Indentation Force. Physical Review Letters. 85. 7. 1456–9. 2000. Yu . M. F. . Kowalewski . T. . Ruoff . R. . 2000PhRvL..85.1456Y .
  8. 10.1103/PhysRevLett.86.87. Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy. Physical Review Letters. 86. 1. 87–90. 2001. Yu . M. F. . Kowalewski . T. . Ruoff . R. . 2001PhRvL..86...87Y . 11136100.
  9. 10.1063/1.1356437. Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study. Journal of Applied Physics. 89. 8. 4554. 2001. Yu . M. F. . Dyer . M. J. . Ruoff . R. S. . 2001JAP....89.4554Y .
  10. Xu. T. T.. Fisher. F. T.. Brinson. L. C.. L. Catherine Brinson. Ruoff. R. S.. 2003. Bone-Shaped Nanomaterials for Nanocomposite Applications. Nano Letters. 3. 8. 1135. 2003NanoL...3.1135X. 10.1.1.659.9826. 10.1021/Nl0343396.
  11. 10.1021/Nl0345973. Direct Observation of Polymer Sheathing in Carbon Nanotube−Polycarbonate Composites. Nano Letters. 3. 11. 1593. 2003. Ding . W.. Eitan . A.. Fisher . F. T.. Chen . X.. Dikin . D. A.. Andrews . R.. Brinson . L. C.. Schadler . L. S. . Linda Schadler . Ruoff . R. S.. 2003NanoL...3.1593D . 10.1.1.659.9130.
  12. 10.1021/Jp002828d. Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry B. 104. 37. 8764. 2000. Yu . M. F. . Yakobson . B. I. . Ruoff . R. S. .
  13. 10.1021/Jp990882s. Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes: Kinky Chemistry. The Journal of Physical Chemistry B. 103. 21. 4330. 1999. Srivastava . D. . Brenner . D. W. . Schall . J. D. . Ausman . K. D. . Yu . M. . Ruoff . R. S. .
  14. 10.1088/0957-4484/10/3/306. Nanostressing and mechanochemistry. Nanotechnology. 10. 3. 258. 1999. Ausman . K. D. . Rohrs . H. W. . Yu . M. . Ruoff . R. S. . 1999Nanot..10..258A . 250903443.
  15. 10.1021/J100115a049. Solubility of fullerene (C60) in a variety of solvents. The Journal of Physical Chemistry. 97. 13. 3379. 1993. Ruoff . R. S.. Tse . D. S. . Malhotra . R. . Lorents . D. C. .
  16. 10.1038/362140a0. Anomalous solubility behaviour of C60. Nature. 362. 6416. 140. 1993. Ruoff . R. S. . Malhotra . R. . Huestis . D. L. . Tse . D. S. . Lorents . D. C. . 1993Natur.362..140R . 4240927.
  17. 10.1021/Jp9804401. C60·Bromobenzene Solvate: Crystallographic and Thermochemical Studies and Their Relationship to C60Solubility in Bromobenzene. The Journal of Physical Chemistry B. 102. 19. 3712. 1998. Korobov . M. V. . Mirakian . A. L. . Avramenko . N. V. . Valeev . E. F. . Neretin . I. S. . Slovokhotov . Y. L. . Smith . A. L. . Olofsson . G. . Ruoff . R. S. .
  18. 10.1021/Jp002555m. Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes. The Journal of Physical Chemistry B. 104. 38. 8911. 2000. Ausman . K. D. . Piner . R. . Lourie . O. . Ruoff . R. S. . Korobov . M. .
  19. 10.1021/Cm801932u. Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets. Chemistry of Materials. 20. 21. 6592. 2008. Park . S. . An . J. . Piner . R. D. . Jung . I. . Yang . D. . Velamakanni . A. . Nguyen . S. T. . Ruoff . R. S. .
  20. 10.1021/Nl803798y. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Letters. 9. 4. 1593–7. 2009. Park . S. . An . J. . Jung . I. . Piner . R. D. . An . S. J. . Li . X. . Velamakanni . A. . Ruoff . R. S. . 2009NanoL...9.1593P . 19265429. 28472164.
  21. 10.1126/science.259.5093.346. 17832348. Single Crystal Metals Encapsulated in Carbon Nanoparticles. Science. 259. 5093. 346–8. 1993. Ruoff . R. S.. Lorents . D. C.. Chan . B.. Malhotra . R.. Subramoney . S.. 1993Sci...259..346R . 30733131.
  22. 10.1016/0008-6223(94)90173-2. Magnetic separation of GdC2 encapsulated in carbon nanoparticles. Carbon. 32. 3. 507. 1994. Subramoney . S. . Ruoff . R. S. . Lorents . D. C. . Chan . B. . Malhotra . R. . Dyer . M. J. . Parvin . K..
  23. 10.1063/1.124316. Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Applied Physics Letters. 75. 2. 193. 1999. Lu . X. . Huang . H. . Nemchuk . N. . Ruoff . R. S. . 1999ApPhL..75..193L .
  24. 10.1088/0957-4484/10/3/308. Tailoring graphite with the goal of achieving single sheets. Nanotechnology. 10. 3. 269. 1999. Lu . X. . Yu . M. . Huang . H. . Ruoff . R. S. . 1999Nanot..10..269L . 250802837.
  25. Li . X. . Cai . W. . An . J. . Kim . S. . Nah . J. . Yang . D. . Piner . R. . Velamakanni . A. . Jung . I. . 10.1126/science.1171245 . Tutuc . E. . Banerjee . S. K. . Colombo . L. . Ruoff . R. S. . Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils . Science . 324 . 5932 . 1312–1314 . 2009 . 19423775. 0905.1712 . 2009Sci...324.1312L . 17942323 .
  26. 10.1063/1.3220807. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters. 95. 12. 123115. 2009. Cai . W. . Zhu . Y. . Li . X. . Piner . R. D. . Ruoff . R. S. . 2009ApPhL..95l3115C .
  27. 10.1021/Nl902623y. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters. 9. 12. 4359–63. 2009. Li . X. . Zhu . Y. . Cai . W. . Borysiak . M. . Han . B. . Chen . D. . Piner . R. D. . Colombo . L. . Ruoff . R. S. . 2009NanoL...9.4359L . 19845330.
  28. 10.1021/Nl101629g. 20957985. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters. 10. 11. 4328–4334. 2010. Li . X. . Magnuson . C. W. . Venugopal . A. . An . J. . Suk . J. W. . Han . B. . Borysiak . M. . Cai . W. . Velamakanni . A. . Zhu . Y. . Fu . L. . Vogel . E. M. . Voelkl . E. . Colombo . L. . Ruoff . R. S. . 1010.4731 . 2010NanoL..10.4328L . 15786442.
  29. 10.1021/Ja109793s. Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society. 133. 9. 2816–2819. 2011. Li . X. . Magnuson . C. W. . Venugopal . A. . Tromp . R. M. . Hannon . J. B. . Vogel . E. M. . Colombo . L. . Ruoff . R. S. . 21309560.
  30. 10.1021/Nl201699j. Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu–Ni Alloy Foils. Nano Letters. 11. 9. 3519–3525. 2011. Chen . S. . Cai . W. . Piner . R. D. . Suk . J. W. . Wu . Y. . Ren . Y. . Kang . J. . Ruoff . R. S. . 21793495. 2011NanoL..11.3519C.
  31. 10.1021/Nn301689m. 22946844. Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu–Ni Alloy Foils. ACS Nano. 6. 9. 7731–7738. 2012. Wu . Y. . Chou . H. . Ji . H. . Wu . Q. . Chen . S. . Jiang . W. . Hao . Y. . Kang . J. . Ren . Y. . Piner . R. D. . Ruoff . R. S. .
  32. 10.1126/science.1243879. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science. 342. 6159. 720–723. 2013. Hao . Y.. Bharathi . M. S.. Wang . L.. Liu . Y.. Chen . H.. Nie . S.. Wang . X.. Chou . H.. Tan . C.. Fallahazad . B.. Ramanarayan . H.. Magnuson . C. W.. Tutuc . E.. Yakobson . B. I.. McCarty . K. F.. Zhang . Y. -W. . Kim . P.. Hone . J.. Colombo . L.. Ruoff . R. S.. 2013Sci...342..720H . 24158906. 17683306.
  33. 10.1126/science.1162369. Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide. Science. 321. 5897. 1815–1817. 2008. Cai . W.. Piner . R. D.. Stadermann . F. J.. Park . S.. Shaibat . M. A.. Ishii . Y.. Yang . D.. Velamakanni . A.. An . S. J.. Stoller . M.. An . J.. Chen . D.. Ruoff . R. S.. 2008Sci...321.1815C . 18818353. 8908114.
  34. 10.1021/Nl902515k. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters. 9. 12. 4268–4272. 2009. Li . X. . Cai . W. . Colombo . L. . Ruoff . R. S. . 0907.1859 . 2009NanoL...9.4268L . 19711970. 5056875.
  35. 10.1021/Ja9030243. NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional13C Solid-State NMR and ab Initio Chemical Shift Calculations. Journal of the American Chemical Society. 132. 16. 5672–5676. 2010. Casabianca . L. B. . Shaibat . M. A. . Cai . W. W. . Park . S. . Piner . R. . Ruoff . R. S. . Ishii . Y. . 20359218 . 2857913.
  36. 10.1038/Nmat3207. Thermal conductivity of isotopically modified graphene. Nature Materials. 11. 3. 203–207. 2012. Chen . S. . Wu . Q. . Mishra . C. . Kang . J. . Zhang . H. . Cho . K. . Cai . W. . Balandin . A. A. . Ruoff . R. S. . 1112.5752 . 2012NatMa..11..203C . 22231598. 119228971.
  37. 10.1039/B512799h. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry. 16. 2. 155–158. 2006. Stankovich . S. . Piner . R. D. . Chen . X. . Wu . N. . Nguyen . S. T. . Ruoff . R. S. .
  38. 10.1038/Nature04969. Graphene-based composite materials. Nature. 442. 7100. 282–6. 2006. Stankovich . S. . Dikin . D. A. . Dommett . G. H. B. . Kohlhaas . K. M. . Zimney . E. J. . Stach . E. A. . Piner . R. D. . Nguyen . S. T. . Ruoff . R. S. . 2006Natur.442..282S . 16855586. 37536.
  39. 10.1016/j.carbon.2006.06.004. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon. 44. 15. 3342–3347. 2006. Stankovich . S. . Piner . R. D. . Nguyen . S. T. . Ruoff . R. S. . 2006Carbo..44.3342S.
  40. Watcharotone. Supinda. Dikin. Dmitriy A.. Stankovich. Sasha. Piner. Richard. Jung. Inhwa. Dommett. Geoffrey H. B.. Evmenenko. Guennadi. Wu. Shang-En. Chen. Shu-Fang. Liu. Chuan-Pu. Nguyen. Sonbinh T.. Ruoff. Rodney S.. 2007 . Graphene−Silica Composite Thin Films as Transparent Conductors . Nano Letters . 7 . 7 . 1888–1892 . 10.1021/Nl070477+ . 17592880. 2007NanoL...7.1888W.
  41. 10.1038/Nature06016. 17653188. Preparation and characterization of graphene oxide paper. Nature. 448. 7152. 457–460. 2007. Dikin . D. A. . Stankovich . S. . Zimney . E. J. . Piner . R. D. . Dommett . G. H. B. . Evmenenko . G. . Nguyen . S. T. . Ruoff . R. S. . 2007Natur.448..457D . 4347694.
  42. 10.1021/Nl0714177. Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets. Nano Letters. 7. 12. 3569–3575. 2007. Jung . I. . Pelton . M. . Piner . R. . Dikin . D. A. . Stankovich . S. . Watcharotone . S. . Hausner . M. . Ruoff . R. S. . 0706.0029 . 2007NanoL...7.3569J . 846947.
  43. 10.1021/Nl802558y. Graphene-Based Ultracapacitors. Nano Letters. 8. 10. 3498–502. 2008. Stoller . M. D. . Park . S. . Zhu . Y. . An . J. . Ruoff . R. S. . 2008NanoL...8.3498S . 18788793.
  44. Zhu . Y. . Murali . S. . Stoller . M. D. . Ganesh . K. J. . Cai . W. . Ferreira . P. J. . Pirkle . A. . Wallace . R. M. . Cychosz . K. A. . 10.1126/science.1200770 . Thommes . M. . Su . D. . Stach . E. A. . Ruoff . R. S. . Carbon-Based Supercapacitors Produced by Activation of Graphene . Science . 332 . 6037 . 1537–1541 . 2011 . 21566159. 2011Sci...332.1537Z . 10398110 .
  45. 10.1021/Nl203903z. Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors. Nano Letters. 12. 4. 1806–1812. 2012. Zhang . L. L. . Zhao . X. . Stoller . M. D. . Zhu . Y. . Ji . H. . Murali . S. . Wu . Y. . Perales . S. . Clevenger . B. . Ruoff . R. S. . 22372529. 2012NanoL..12.1806Z.
  46. 10.1021/Nl300528p. Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Letters. 12. 5. 2446–2451. 2012. Ji . H. . Zhang . L. . Pettes . M. T. . Li . H. . Chen . S. . Shi . L. . Piner . R. . Ruoff . R. S. . 22524299. 2012NanoL..12.2446J. 22298570.
  47. 10.1016/j.nanoen.2012.11.006. Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80°C. Nano Energy. 2. 3. 403–411. 2013. Tsai . W. Y. . Lin . R. . Murali . S. . Li Zhang . L. . McDonough . J. K. . Ruoff . R. S. . Taberna . P. L. . Gogotsi . Y. . Simon . P..
  48. 10.1021/Nl202386p. Oxidative Doping Renders Graphene Hydrophilic, Facilitating Its Use As a Support in Biological TEM. Nano Letters. 11. 10. 4319–23. 2011. Pantelic . R. S. . Suk . J. W. . Hao . Y. . Ruoff . R. S. . Stahlberg . H. . 21910506. 2011NanoL..11.4319P.
  49. 10.1021/Nn103028d. 21275384. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano. 5. 2. 1321–7. 2011. Chen . S. . Brown . L. . Levendorf . M. . Cai . W. . Ju . S. Y. . Edgeworth . J. . Li . X. . Magnuson . C. W. . Velamakanni . A. . Piner . R. D. . Kang . J. . Park . J. . Ruoff . R. S. . 1011.3875 . 5260622.
  50. 10.1557/Mrs.2012.278. Personal perspectives on graphene: New graphene-related materials on the horizon. MRS Bulletin. 37. 12. 1314–1318. 2012. Ruoff . R. S. . 2012MRSBu..37.1314R. 137514417.
  51. 10.1063/1.455515. Rotational spectrum and structure of the linear HCN trimer. J. Chem. Phys.. 89. 1. 138. 1988. Ruoff . R. S.. Emilssonl . T.. Klotsl . C.. Chuang . C.. Gutowsky . H. S.. 1988JChPh..89..138R .
  52. 10.1063/1.458848. Relaxation of conformers and isomers in seeded supersonic jets of inert gases. The Journal of Chemical Physics. 93. 5. 3142. 1990. Ruoff . R. S.. Klots . T. D.. Emilsson . T.. Gutowsky . H. S.. 1990JChPh..93.3142R . free.
  53. Web site: Forget Billions of Years: Scientists Have Grown Diamonds in Just 150 Minutes . David Nield . 25 April 2024 . . 25 April 2024 .
  54. Gong. Yan . Luo. Da . Choe . Myeonggi . Kim . Yongchul . Ram . Babu . Zafari . Mohammad . Seong . Won Kyung . Bakharev . Pavel . Wang . Meihui . Park. In Kee . Lee . Seulyi . Shin . Tae Joo . Lee . Zonghoon . Lee . Geunsik . Ruoff . Rodney S. . Rodney S. Ruoff . 24 April 2024 . Growth of diamond in liquid metal at 1 atm pressure . Nature . 629. 8011. 348–354. 10.1038/s41586-024-07339-7. 38658760 . 2024Natur.629..348G .
  55. As determined from Web of Science September 13, 2022.
  56. As of February 3, 2022.
  57. Web site: Center for Multidimensional Carbon Materials . . Institute for Basic Science . 4 October 2018 . Professor Ruoff is the director of the Center for Multidimensional Carbon Materials, established in November 2013..
  58. Web site: Hall of Citation Laureates . . Clarivate Analytics . 4 October 2018 .
  59. Web site: Rodney Ruoff, Director of the IBS Center for Multidimensional Carbon Materials, Listed as a Citation Laureate with the Track Record Deemed to be of 'Nobel Stature' . Byun . Kwan Joo . 23 August 2018 . Institute for Basic Science . 5 September 2018 .
  60. Web site: Hall of Citation Laureates. 2022-02-03. Clarivate. en-US.
  61. Web site: James C. McGroddy Prize for New Materials . . American Physical Society . 4 October 2018 .
  62. Web site: Professor Rodney S. Ruoff wins prestigious James C. McGroddy Prize . . 29 November 2017 . . 15 February 2019 .
  63. Web site: UNIST Professor Selected as Recipient of SGL Carbon Award: Recognized for his outstanding and many contributions on a variety of carbon materials . Heo . Joo Hyeon . 7 July 2016 . Department of Chemistry . UNIST . 5 October 2018 .
  64. Web site: UNIST researchers named to Thomson Reuters' list of highly cited scientists . . 18 November 2016 . EurekAlert . 5 October 2018 .
  65. Web site: Three UNIST researchers named world's most highly cited researchers . Heo . JooHyeon . 29 November 2017 . EurekAlert . 5 October 2018 .
  66. Web site: Seven UNIST Researchers Named 'World's Most Highly Cited Researchers' . Joo . Hyeon Heo . 28 November 2018 . News Center . . 12 February 2019 .
  67. Web site: IBS Places First Among Korean Institutions by Featuring 9 Scientists in List of Highly Cited Researchers . . 4 December 2018 . . 12 February 2019 .
  68. Web site: UNIST 교수 7명, '세계에서 가장 영향력 있는 연구자'에 선정 . 구 . 미현 . 27 November 2018 . . 12 February 2019 . ko.
  69. Web site: Seven IBS Scientists Named World's Most Highly Cited Researchers: Accounting for 13.1% of Korea's scientists on the list . . 20 November 2019 . Institute for Basic Science . 6 March 2020 .
  70. Web site: Seven UNIST Faculty Named to Highly Cited Researchers 2021 List. 2022-02-03. UNIST News Center. en-US.
  71. Web site: David Turnbull Lectureship. www.mrs.org. 2019-10-27.